Following the publication of the Task Force document on heart rate variability (HRV) in 1996, a number of articles have been published to describe new HRV methodologies and their application in different physiological and clinical studies. This document presents a critical review of the new methods. A particular attention has been paid to methodologies that have not been reported in the 1996 standardization document but have been more recently tested in sufficiently sized populations. The following methods were considered: Long-range correlation and fractal analysis; Short-term complexity; Entropy and regularity; and Nonlinear dynamical systems and chaotic behaviour. For each of these methods, technical aspects, clinical achievements, and suggestions for clinical application were reviewed. While the novel approaches have contributed in the technical understanding of the signal character of HRV, their success in developing new clinical tools, such as those for the identification of high-risk patients, has been rather limited. Available results obtained in selected populations of patients by specialized laboratories are nevertheless of interest but new prospective studies are needed. The investigation of new parameters, descriptive of the complex regulation mechanisms of heart rate, has to be encouraged because not all information in the HRV signal is captured by traditional methods. The new technologies thus could provide after proper validation, additional physiological, and clinical meaning. Multidisciplinary dialogue and specialized courses in the combination of clinical cardiology and complex signal processing methods seem warranted for further advances in studies of cardiac oscillations and in the understanding normal and abnormal cardiac control processes.
Heart rate variability (HRV) spectra are typically analyzed for the components related to low- (less than 0.15 Hz) and high- (greater than 0.15 Hz) frequency variations. However, there are very-low-frequency components with periods up to hours in HRV signals, which might smear short-term spectra. We developed a method of spectral analysis suitable for selectively extracting very-low-frequency components, leaving intact the low- and high-frequency components of interest in HRV spectral analysis. Computer simulations showed that those low-frequency components were well characterized by fractional Brownian motions (FBMs). If the scale invariant, or self-similar, property of FBMs is considered a new time series (x') was constructed by sampling only every other point (course graining) of the original time series (x). Evaluation of the cross-power spectra between these two (Sxx') showed that the power of the FBM components was preserved, whereas that of the harmonic components vanished. Subtraction of magnitude of Sxx from the autopower spectra of the original sequence emphasized only the harmonic components. Application of this method to HRV spectral analyses indicated that it might enable one to observe more clearly the low- and high-frequency components characteristic of autonomic control of heart rate.
We describe the nature of human behavioral organization, specifically how resting and active periods are interwoven throughout daily life. Active period durations with physical activity count successively above a predefined threshold, when rescaled with individual means, follow a universal stretched exponential (gamma-type) cumulative distribution with characteristic time, both in healthy individuals and in patients with major depressive disorder. On the other hand, resting period durations below the threshold for both groups obey a scale-free power-law cumulative distribution over two decades, with significantly lower scaling exponents in the patients. We thus find universal distribution laws governing human behavioral organization, with a parameter altered in depression.
Mental or cognitive brain functions, and the effect on them of abnormal psychiatric diseases, are difficult to approach through molecular biological techniques due to the lack of appropriate assay systems with objective measures. We therefore study laws of behavioral organization, specifically how resting and active periods are interwoven throughout daily life, using objective criteria, and first discover that identical laws hold both for healthy humans subject to the full complexity of daily life, and wild-type mice subject to maximum environmental constraints. We find that active period durations with physical activity counts successively above a predefined threshold, when rescaled with individual means, follow a universal stretched exponential (gamma-type) cumulative distribution, while resting period durations below the threshold obey a universal power-law cumulative distribution with identical parameter values for both of the mammalian species. Further, by analyzing the behavioral organization of mice with a circadian clock gene (Period2) eliminated, and humans suffering from major depressive disorders, we find significantly lower parameter values (power-law scaling exponents) for the resting period durations in both these cases. Such a universality and breakdown of the behavioral organization of mice and humans, revealed through objective measures, is expected to facilitate the understanding of the molecular basis of the pathophysiology of neurobehavioral diseases, including depression, and lay the foundations for formulating a range of neuropsychiatric behavioral disorder models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.