Evodiamine, a major alkaloidal principle of Evodia fruits (Evodia rutaecarpa, Rutaceae), showed vanilloid receptor agonistic activities comparable to capsaicin. The Chinese literature refers to Evodia fruits as a "hot nature" herb. In spite of the similarities in the actions of evodiamine and capsaicin in vitro, evodiamine has no perceptible taste, including a peppery hot taste. Therefore, the effectiveness of evodiamine and the extract of Evodia fruits in preventing obesity on male C3H mice, or male SD rats were examined. When evodiamine was supplemented at 0.03% of the diet and fed to mice for 12 days, the perirenal fat weight became significantly lower than in the control group. The epididymal fat mass was also decreased in the evodiamine diet group. When evodiamine was supplemented at 0.02% in the form of ethanol extract of Evodia fruits to the high-fat diet and fed to rats for 21 days, the body weight, the perirenal fat weight, epididymal fat weight, the levels of serum free fatty acid, total lipids in the liver, triglyceride in the liver, and cholesterol level in the liver were significantly reduced as compared with the control diet group. Furthermore, both lipolytic activity in the perirenal fat tissue and specific GDP binding in brown adipose tissue mitochondria, as the biological index of enhanced heat production, were significantly increased in the evodiamine fed rats. Fasting mice subcutaneously administered 1-3 mg/kg evodiamine showed decreased core body temperature by 1-2 degrees C. This hypothermic effect was prevented by the pretreatment of intraperitoneally administered 10 mg/kg capsazepine, a vanilloid receptor antagonist. On the other hand, food-sated mice subcutaneously administered 1-3 mg/kg evodiamine showed unchanged core body temperature and increased tail skin temperature by more than 5 degrees C, suggesting the increased energy expenditure by enhanced heat dissipation. In conclusion, we have demonstrated that a novel non-pungent vanilloid receptor agonist, evodiamine, mimics the characteristic anti-obese effects induced by capsaicin. Evodiamine would induce heat loss and heat production at the same time and dissipate food energy, preventing the accumulation of perivisceral fat and the body weight increase.
We have previously reported that proanthocyanidins extracted from grape seeds possess growth-promoting activity toward murine hair epithelial cells in vitro and stimulate anagen induction in hair cycle progression in vivo. This report constitutes a comparison of the growth-promoting activity of procyanidin oligomers and the target cells of procyanidins in the skin. Results show that procyanidin dimer and trimer exhibit higher growth-promoting activity than the monomer. The maximum growth-promoting activity for hair epithelial cells with procyanidin B-2, an epicatechin dimer, reached about 300% (30 microM) relative to controls (= 100%) in a 5 d culture. Optimum concentration of procyanidin C-1, an epicatechin trimer, was lower than that of procyanidin B-2; the maximum growth-promoting activity of procyanidin C-1 was about 220% (3 microM). No other flavonoid compounds examined exhibit higher proliferative activities than the procyanidins. In skin constituent cells, only epithelial cells such as hair keratinocytes or epidermal keratinocytes respond to procyanidin oligomers. Topical application of 1% procyanidin oligomers on shaven C3H mice in the telogen phase led to significant hair regeneration [procyanidin B-2, 69.6% +/- 21.8% (mean +/- SD); procyanidin B-3, 80.9% +/- 13.0%; procyanidin C-1, 78.3% +/- 7.6%] on the basis of the shaven area; application of vehicle only led to regeneration of 41.7% (SD = 16.3%). In this paper, we demonstrate the hair-growing activity of procyanidin oligomers both in vitro and in vivo, and their potential for use as agents to induce hair growth.
Cardiotonic effects of evodiamine and rutaecarpine, constituents of the fruits of Evodia rutaecarpa Bentham Rutaceae, were evaluated on guinea pig isolated atria. Comparison with capsaicin, a vanilloid receptor agonist, revealed similar positive inotropic and chronotropic activity, as judged from antagonistic effects of the competitive vanilloid receptor (capsaicin receptor) antagonist capsazepine, the non-competitive vanilloid receptor antagonist ruthenium red, the calcitonin gene related peptide antagonist CGRP(8-37), the P2X purinoceptor antagonist PPADS, and various desensitization studies. Evodiamine and rutaecarpine produced transient positive inotropic and chronotropic effects on the guinea-pig isolated atria, followed by a desensitizing effect to additional administration. Dose-response relationships for evodiamine, rutaecarpine and capsaicin were obtained. All the compounds evoked positive inotropic and chronotropic effects in a concentration-dependent manner. Maximal contractions for evodiamine, rutaecarpine and capsaicin were observed at concentrations of 1 microM, 3 microM and 0.3 microM, respectively. The cardiotonic responses evoked by both evodiamine and rutaecarpine were shifted to the right by capsazepine, an established antagonist of vanilloid receptor (capsaicin-receptor). The effects of both evodiamine (1 microM) and rutaecarpine (3 microM) were abolished by pretreatment with a desensitizing dosage of capsaicin (1 microM), developing cross-tachyphylaxis between these compounds. The effects of evodiamine (1 microM), rutaecarpine (3 microM) and capsaicin (0.3 microM) were also significantly reduced by pretreatment with ruthenium red (10 microM) and CGRP (8-37) (10 microM). The effects of evodiamine, rutaecarpine and capsaicin were not affected by pretreatment with PPADS (100 microM), a highly selective P2X purinoceptor antagonist, and the possibility of the involvement of the P2X purinoceptor was excluded. These results suggest that the positive inotropic and chronotropic effects on the guinea-pig isolated right atria induced by both evodiamine and rutaecarpine could be attributed to their interaction with vanilloid receptors and the resultant release of CGRP, a cardiotonic neurotransmitter, from capsaicin-sensitive nerves as with capsaicin.
Copolymerization of carbon dioxide with 1.2-epoxycyclohexane (EPCH) and with 1.4-epoxycyclohexane was examined. 1.2-Epoxycyclohexane was copolymerized with carbon dioxide bythe diethylzinc/water system, but 1.4-epoxycyclohexane was not polymerized by this catalyst. Determining the configuration of the EPCH unit in the EPCH/carbon dioxide copolymer by alkaline hydrolysis of the copolymer, it was found that the configuration at the carbon atom where ring opening of EPCH takes place was inverted during copolymerization. ZUSAMMENFASSUNG:Die Copolymerisation von Kohlendioxid mit 1.2-Epoxycyclohexan (EPCH) und mit 1.4-Epoxycyclohexan wurde untersucht. 1.2-Epoxycyclohexan wurde mit Kohlendioxid durch ein Diathylzink/Wasser-System copolymerisiert, das 1.4-Epoxycyclohexan jedoch nicht. Die Konfiguration der EPCH-Einheit in dem EPCH/Kohlendioxid-Copolymeren wurde durch alkalische Hydrolyse des Copolymeren bestimmt. Es wurde festgestellt, daB die Konfiguration an dem Kohlenstoffatom, an dem die Ringoffnung des EPCH eintritt, wahrend der Copolymerisation invertiert wird.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.