Formation of spermatozoa of normal shape, number, and motility is insufficient for the male siring of pups. The spermatozoa must be accompanied by sound fertilizing ability. We found that males with disrupted testis-expressed gene 101 (Tex101) produce normal-looking but fertilization-incompetent spermatozoa, which were accompanied by a deficiency of a disintegrin and metallopeptidase domain 3 (ADAM3) on sperm plasma membrane. It was also found that the existence of TEX101 on spermatozoa was regulated by angiotensin-converting enzyme (ACE). The removal of GPI-anchored protein TEX101 by ACE was essential to produce fertile spermatozoa, and the function of ACE was not depending on its well-known peptidase activity. The finding of TEX101 as a unique specific substrate for ACE may provide a potential target for the production of an awaited contraceptive medicine for men.
Recent evidence suggests that ovarian high-grade serous carcinoma (HGSC) originates from the epithelium of the fallopian tube. However, most mouse models are based on the previous prevailing view that ovarian cancer develops from the transformation of the ovarian surface epithelium. Here, we report the extensive histological and molecular characterization of the mogp-TAg transgenic mouse, which expresses the SV40 large T-antigen (TAg) under the control of the mouse müllerian-specific Ovgp-1 promoter. Histologic analysis of the fallopian tubes of mogp-TAg mice identified a variety of neoplastic lesions analogous to those described as precursors to ovarian HGSC. We identified areas of normal appearing p53-positive epithelium that are similar to “p53 signatures” in the human fallopian tube. More advanced proliferative lesions with nuclear atypia and epithelial stratification were also identified that were morphologically and immunohistochemically reminiscent of human serous tubal intraepithelial carcinoma (STIC), a potential precursor of ovarian HGSC. Beside these noninvasive precursor lesions, we also identified invasive adenocarcinoma in the ovary of 56% of the mice. Microarray analysis revealed several genes differentially expressed between the fallopian tube of mogp-TAg and wild type (WT) C57BL/6. One of these genes, Top2a, which encodes topoisomerase II-alpha, was shown by immunohistochemistry to be concurrently expressed with elevated p53 and specifically elevated in mouse STICs, but not in surrounding tissues. TOP2A protein was also found elevated in human STICs, low-grade, and high-grade serous carcinoma. The mouse model reported here displays a progression from normal tubal epithelium to invasive HGSC in the ovary, and therefore closely simulates the current emerging model of human ovarian HGSC pathogenesis. This mouse therefore has the potential to be a very useful new model for elucidating the mechanisms of serous ovarian tumorigenesis, as well as for developing novel approaches for the prevention, diagnosis, and therapy of this disease.
Myeloid-derived suppressive cells (MDSC) have been reported to promote metastasis, but the loss of cancer-induced B cells/B regulatory cells (tBregs) can block metastasis despite MDSC expansion in cancer. Here, using multiple murine tumor models and human MDSC, we show that MDSC populations which expand in cancer have only partially primed regulatory function and limited pro-metastatic activity unless they are fully educated by tBregs. Cancer-induced tBregs directly activate the regulatory function of both the monocyte and granulocyte subpopulations of MDSC, relying in part on TgfβR1/TgfβR2 signaling. MDSC fully educated in this manner exhibit an increased production of ROS and NO and more efficiently suppress CD4+ and CD8+ T cells, thereby promoting tumor growth and metastasis. Thus, loss of tBregs or TgfβR deficiency in MDSC is sufficient to disable their suppressive function and to block metastasis. Overall, our data indicate that cancer-induced B cells/B regulatory cells are important regulators of the immune suppressive and pro-metastatic functions of MDSC.
A monoclonal antibody, designated TES101, was raised by immunizing BALB/c mice with an allogenic mouse testicular homogenate followed by immunohistochemical selection as the initial screening method. By searching the expressed sequence tag (EST) database with the N-terminal amino acid sequence of TES101 reactive protein, we found that the predicted amino acid sequence encoded by a mouse testicular EST clone matched the TES101 protein sequence. Sequence analysis of the clone revealed no homologous molecule in the DNA/protein database. Based on data obtained from N-terminal amino acid analysis of the TES101 protein, the derived amino acid sequence contained a signal peptide region of 25 amino acids and a mature protein region of 225 amino acids, which translated into a protein with a molecular weight of 24 093. Northern blot analysis showed that mRNA of the TES101 protein was found in testis but not in any other mouse tissues examined. Western blot analysis revealed that TES101 reacted with a 38-kDa band on SDS-PAGE under nonreducing conditions, and this reactivity was abrogated under reducing conditions. Immunoelectron microscopic studies demonstrated that the molecule was predominantly located on the plasma membrane of spermatocytes and spermatids but not in Sertoli cells or interstitial cells, including Leydig cells. Thus, the TES101 protein is a novel molecule present primarily on the surface of developing male germ cells. TES101 protein may play a role in the processes underlying male germ cell formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.