We have improved the efficiency of photoconductive antennas (PCAs) using low-temperature-grown GaAs (LT-GaAs). We found that the physical properties of LT-GaAs photoconductive layers greatly affect the generation and detection characteristics of terahertz (THz) waves. In THz generation, high photoexcited carrier mobility and the presence of a few As clusters in the LT-GaAs are two important factors. In detection, short carrier lifetime and the absence of a polycrystalline structure in the LT-GaAs are significant factors. By optimizing these physical properties, we improved the total dynamic range of THz generation and detection by 15 dB over that obtained by conventional commercially available PCAs. In addition, we replaced the semi-insulating GaAs (SI-GaAs) substrate with a Si substrate, which has a low absorption in the THz region. We proposed a new idea of including a highly insulating Al0.5Ga0.5As buffer layer on the Si substrate. Finally, we confirmed the feasibility of manufacturing PCAs using Si substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.