Despite the high prevalence of intervertebral disc disease, little is known about changes in intervertebral disc cells and their regenerative potential with ageing and intervertebral disc degeneration. Here we identify populations of progenitor cells that are Tie2 positive (Tie2+) and disialoganglioside 2 positive (GD2+), in the nucleus pulposus from mice and humans. These cells form spheroid colonies that express type II collagen and aggrecan. They are clonally multipotent and differentiated into mesenchymal lineages and induced reorganization of nucleus pulposus tissue when transplanted into non-obese diabetic/severe combined immunodeficient mice. The frequency of Tie2+ cells in tissues from patients decreases markedly with age and degeneration of the intervertebral disc, suggesting exhaustion of their capacity for regeneration. However, progenitor cells (Tie2+GD2+) can be induced from their precursor cells (Tie2+GD2−) under simple culture conditions. Moreover, angiopoietin-1, a ligand of Tie2, is crucial for the survival of nucleus pulposus cells. Our results offer insights for regenerative therapy and a new diagnostic standard.
Putative myogenic and endothelial (myo-endothelial) cell progenitors were identified in the interstitial spaces of murine skeletal muscle by immunohistochemistry and immunoelectron microscopy using CD34 antigen. Enzymatically isolated cells were characterized by fluorescence-activated cell sorting on the basis of cell surface antigen expression, and were sorted as a CD34+ and CD45− fraction. Cells in this fraction were ∼94% positive for Sca-1, and mostly negative (<3% positive) for CD14, 31, 49, 144, c-kit, and FLK-1. The CD34+/45− cells formed colonies in clonal cell cultures and colony-forming units displayed the potential to differentiate into adipocytes, endothelial, and myogenic cells. The CD34+/45− cells fully differentiated into vascular endothelial cells and skeletal muscle fibers in vivo after transplantation. Immediately after sorting, CD34+/45− cells expressed only c-met mRNA, and did not express any other myogenic cell-related markers such as MyoD, myf-5, myf-6, myogenin, M-cadherin, Pax-3, and Pax-7. However, after 3 d of culture, these cells expressed mRNA for all myogenic markers. CD34+/45− cells were distinct from satellite cells, as they expressed Bcrp1/ABCG2 gene mRNA (Zhou et al., 2001). These findings suggest that myo-endothelial progenitors reside in the interstitial spaces of mammalian skeletal muscles, and that they can potentially contribute to postnatal skeletal muscle growth.
To measure the ability of human hematopoietic stem cells (HSCs), the SCIDrepopulating cell (SRC) assay has been widely used. Conventionally, human HSCs are transplanted into a nonobese diabetic/ severe combined immunodeficient (NOD/ SCID) mouse via a tail vein. However, those cells must go through various obstacles until they reach the mouse marrow environment, which could explain the generally low homing efficiency in this system. Thus, the capability of HSCs may not be studied accurately by this intravenous transplantation method. In our attempt to reveal actual SRC potential, ie, self-renewal and multilineage differentia-
An experimental model for human T lymphocyte development from hemopoietic stem cells is necessary to study the complex processes of T cell differentiation in vivo. In this study, we report a newly developed nonobese diabetic (NOD)/Shi-scid, IL-2Rγ null (NOD/SCID/γcnull) mouse model for human T lymphopoiesis. When these mice were transplanted with human cord blood CD34+ cells, the mice reproductively developed human T cells in their thymus and migrated into peripheral lymphoid organs. Furthermore, these T cells bear polyclonal TCR-αβ, and respond not only to mitogenic stimuli, such as PHA and IL-2, but to allogenic human cells. These results indicate that functional human T lymphocytes can be reconstituted from CD34+ cells in NOD/SCID/γcnull mice. This newly developed mouse model is expected to become a useful tool for the analysis of human T lymphopoiesis and immune response, and an animal model for studying T lymphotropic viral infections, such as HIV.
Degeneration of the lumbar intervertebral discs is irreversible, with no treatment currently available.Building upon experimental studies that demonstrated the importance of the nucleus pulposus (NP) in preserving disc structure, we demonstrated that reinsertion of NP cells slowed further disc degeneration and that direct cell-tocell contact co-culture with mesenchymal stromal cells (MSCs) significantly upregulated the viability of NP cells in basic and pre-clinical studies in vitro and in vivo using animal models and human cells. Here, we report a 3-year result of a prospective clinical study, aimed to assess the safety and efficacy of activated NP cell transplantation in the degenerate lumbar intervertebral disc. Candidates were 9 patients aged 20-29 years who had Pfirrmann's grade III disc degeneration at the level adjacent to the level scheduled for posterior lumbar intervertebral fusion. Viable NP cells from the fused disc were co-cultured in direct contact with autologous bone marrow-derived MSCs. One million activated NP cells were transplanted into the degenerated disc adjacent to the fused level at 7 d after the first fusion surgery. No adverse effects were observed during the 3-year follow-up period. Magnetic resonance imaging did not show any detrimental effects to the transplanted discs and revealed a mild improvement in 1 case. No cases reported any low back pain. Our clinical study confirmed the safety of activated NP cell transplantation, and the findings suggest the minimal efficacy of this treatment to slow the further degeneration of human intervertebral discs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.