A major class of disease resistance (R) genes which encode nucleotide binding and leucine rich repeat (NB-LRR) proteins have been used in traditional breeding programs for crop protection. However, it has been difficult to functionally transfer NB-LRR-type R genes in taxonomically distinct families. Here we demonstrate that a pair of Arabidopsis (Brassicaceae) NB-LRR-type R genes, RPS4 and RRS1, properly function in two other Brassicaceae, Brassica rapa and Brassica napus, but also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lycopersicum). The solanaceous plants transformed with RPS4/RRS1 confer bacterial effector-specific immunity responses. Furthermore, RPS4 and RRS1, which confer resistance to a fungal pathogen Colletotrichum higginsianum in Brassicaceae, also protect against Colletotrichum orbiculare in cucumber (Cucurbitaceae). Importantly, RPS4/RRS1 transgenic plants show no autoimmune phenotypes, indicating that the NB-LRR proteins are tightly regulated. The successful transfer of two R genes at the family level implies that the downstream components of R genes are highly conserved. The functional interfamily transfer of R genes can be a powerful strategy for providing resistance to a broad range of pathogens.
An improved method for genetic transformation of cucumber (Cucumis sativus L. cv. Shinhokusei No. 1) was developed. Vacuum infiltration of cotyledonary explants with Agrobacterium suspension enhanced the efficiency of Agrobacterium infection in the proximal regions of explants. Co-cultivation on filter paper wicks suppressed necrosis of explants, leading to increased regeneration efficiency. Putative transgenic plants were screened by kanamycin resistance and green fluorescent protein (GFP) fluorescence, and integration of the transgene into the cucumber genome was confirmed by genomic polymerase chain reaction (PCR) and Southern blotting. These transgenic plants grew normally and T1 seeds were obtained from 7 lines. Finally, stable integration and transmission of the transgene in T1 generations were confirmed by GFP fluorescence and genomic PCR. The average transgenic efficiency for producing cucumbers with our method was 11.9 ± 3.5 %, which is among the highest values reported until date using kanamycin as a selective agent.Electronic supplementary materialThe online version of this article (doi:10.1007/s11816-012-0260-1) contains supplementary material, which is available to authorized users.
We investigated estrogen-inducible green fluorescent protein (GFP) expression patterns using an estrogen receptor fused chimeric transcription activator, XVE, in the monocotyledonous model plant rice (Oryza sativa L.). This system has been shown to be an effective chemical-inducible gene expression system in Arabidopsis and has been applied to other plants in order to investigate gene functions or produce marker-free transgenic plants. However, limited information is available on the correlation between inducer concentration and the expression level of the gene induced in monocots. Here, we produced a transgenic rice integrated estrogen-inducible GFP expression vector, pLex:GFP, and investigated dose–response and time-course patterns of GFP induction in rice calli and seedlings for the first time. With 17-β-estradiol treatment at >5 μM, GFP signals were detected in the entire surface of calli within 2 days of culture. Highest GFP signals were extended for 8 days with estradiol treatment at 25 μM. In three-leaf-stage seedlings, GFP signals in the leaves of pLex:GFP-integrated transgenic lines were weaker than those in the leaves of p35S:GFP-integrated transgenic lines. However, GFP signals in the roots of pLex:GFP- and p35S:GFP-integrated transgenic lines were similar with estradiol treatment at >10 μM. With regard to controlling appropriate gene expression, these results might provide helpful indications on estradiol treatment conditions to be used for the XVE system in rice and other monocots.
An efficient genetic transformation method for kabocha squash (Cucurbita moschata Duch cv. Heiankogiku) was established by wounding cotyledonary node explants with aluminum borate whiskers prior to inoculation with Agrobacterium. Adventitious shoots were induced from only the proximal regions of the cotyledonary nodes and were most efficiently induced on Murashige–Skoog agar medium with 1 mg/L benzyladenine. Vortexing with 1% (w/v) aluminum borate whiskers significantly increased Agrobacterium infection efficiency in the proximal region of the explants. Transgenic plants were screened at the T0 generation by sGFP fluorescence, genomic PCR, and Southern blot analyses. These transgenic plants grew normally and T1 seeds were obtained. We confirmed stable integration of the transgene and its inheritance in T1 generation plants by sGFP fluorescence and genomic PCR analyses. The average transgenic efficiency for producing kabocha squashes with our method was about 2.7%, a value sufficient for practical use.
;Despite carrying out C 3 photosynthesis, wild watermelon (Citrullus lanatus sp.) exhibits exceedingly good tolerance to severe drought at high light intensities. However, the mechanism(s) by which this plant protects itself from photodamage has yet to be elucidated. In this study, we characterized wild watermelon cytochrome b 561 (cyt b 561 ), which potentially mediates regeneration of apoplastic ascorbate by transferring electrons from cytosolic ascorbate across the plasma membrane. Two cDNA species for wild watermelon cyt b 561 , designated CLb561A and CLb561B, were isolated. Levels of both CLb561A mRNA and protein were significantly elevated in the leaves during drought at a light intensity of 700 µmol photons m -2 s -1 . The transcript of CLb561B was detected to a much lesser extent, but no CLb561B protein was produced under any condition used in this study. A transient expression assay with the CLb561A::green fluorescent protein fusion construct showed clear fluorescence on the plasma membrane of onion epidermal cells. The CLb561A protein was enriched in the plasma membrane fraction in leaves of transgenic tobacco expressing CLb561A. Moreover, the high activity of apoplastic ascorbate oxidase (AO), which was able to dispose of cyt b 561 -transferred reducing equivalents, increased in leaves of wild watermelon grown at high light intensity, but not lower light intensities. Taken together, these observations suggest the occurrence of a novel pathway for excess light energy dissipation in wild watermelon leaves, where excessive energy absorbed by chloroplasts can be transported to and dissipated safely in the apoplasts through the cooperative action of cyt b 561 and AO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.