A bacterium that produced a large amount ofpoly(y-glutamic acid) (PGA) when it was grown aerobically in a culture medium containing ammonium salt and sugar as sources of nitrogen and carbon, respectively, was isolated from soil. The bacterium, strain T AM-4, was classified as Bacillus subti/is. The maximum PGA production (22.1 mg/ml) was obtained when it was grown in a medium containing 1.8% ammonium chloride and 7.5% fructose at 30°C for 96 h with shaking. Some properties of the PG A obtained at different times of cultivation were investigated by gel permeation chromatography, SDS-PAGE, and measurement of viscosity, and calculation of the D/L ratio of glutamic acid constituting PGA. The results suggested that PGA was elongated with no changes in the diastereoisomer ratio in the molecule.
1,2-alpha-Mannosidase catalyzes the specific cleavage of 1,2-alpha-mannose residues from protein-linked N-glycan. In this study, a novel DNA sequence homologous to the authentic 1,2-alpha-mannosidase was cloned from a cDNA library prepared from solid-state cultured Aspergillus oryzae. The fmanIB cDNA consisted of 1530 nucleotides and encoded a protein of 510 amino acids in which all consensus motifs of the class I alpha-mannosidase were conserved. Expression of the full length of 1,2-alpha-mannosidase cDNA by the Aspergillus host, though it has rarely been done with other filamentous-fungal mannosidase, was successful with fmanIB and caused an increase in both intracellular and extracellular mannosidase activity. The expressed protein (FmanIBp) specifically hydrolyzed 1,2-alpha-mannobiose with maximal activity at a pH of 5.5 and a temperature of 45 degrees C. With Man(9)GlcNAc(2) as the substrate, Man(5)GlcNAc(2) finally accumulated while hydrolysis of the 1,2-alpha-mannose residue of the middle branch was rate-limiting. To examine the intracellular localization of the enzyme, a chimeric protein of FmanIBp with green fluorescent protein was constructed. It showed a dotted fluorescence pattern in the mycelia of Aspergillus, indicative of the localization in intracellular vesicles. Based on these enzymatic and microscopic results, we estimated that FmanIBp is a fungal substitute for the mammalian Golgi 1,2-alpha-mannosidase isozyme IB. This and our previous report on the presence of another ER-type mannosidase in A. oryzae (Yoshida et al., 2000) support the notion that the filamentous fungus has similar steps of N-linked glycochain trimming to those in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.