We report a correlation between the microstructure of the anode electrode of a solid oxide fuel cell (SOFC) and its electrochemical performance for a tubular design. It was shown that the electrochemical performance of the cell was extensively improved when the size of constituent particles was reduced so as to yield a highly porous microstructure. The SOFC had a power density of greater than 1 watt per square centimeter at an operating temperature as low as 600 degrees C with a conventional zirconia-based electrolyte, a nickel cermet anode, and a lanthanum ferrite perovskite cathode material. The effect of the hydrogen fuel flow rate (linear velocity) was also examined for the optimization of operating conditions. Higher linear fuel velocity led to better cell performance for the cell with higher anode porosity. A zirconia-based cell could be used for a low-temperature SOFC system under 600 degrees C just by optimizing the microstructure of the anode electrode and operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.