The International Commission on Radiological Protection has lowered the annual equivalent eye-lens dose to 20 mSv. Although occupational exposure can be high in nuclear medicine (NM) departments, few studies have been conducted regarding eye-lens exposure among NM staff. This study aimed to estimate the annual lens doses of staff in an NM department and identify factors contributing to lens exposure. Four nurses and six radiographers performing positron emission tomography (PET) examinations and four radiographers performing radioisotope (RI) examinations (excluding PET) were recruited for this study. A lens dosimeter was attached near the left eye to measure the 3-mm-dose equivalent; a personal dosimeter was attached to the left side of the neck to measure the 1-cm- and 70-µm-dose equivalents. Measurements were acquired over six months, and the cumulative lens dose was doubled to derive the annual dose. Correlations between the lens and personal-dosimeter doses, between the lens dose and the numbers of procedures, and between the lens dose and the amounts of PET drugs (radiopharmaceuticals) injected were examined. Wilcoxon’s signed-rank test was used to compare lens and personal-dosimeter doses. The estimated annual doses were 0.93 ± 0.13 mSv for PET nurses, 0.71 ± 0.41 mSv for PET radiographers, and 1.10 ± 0.53 mSv for RI radiographers. For PET nurses, but not for PET or RI radiographers, there was a positive correlation between the numbers of procedures and lens doses and between amounts injected and lens doses. There was a significant difference between the lens and personal-dosimeter doses of PET nurses. The use of protective measures, such as shielding, should prevent NM staff from receiving lens doses > 20 mSv/year. However, depending on the height of the protective shield, PET nurses may be unable to assess the lens dose accurately using personal dosimeters.
This paper discusses optimal planning problems for dispersed generating sources so as to provide a guideline for their introduction to power systems. First, a recursive method is developed from the viewpoint of supplying electric power only where solutions for one unit are superposed. The computational loads are decreased by selecting alternatives of buses based on the so‐called penalty factor. However, for effective utilization of dispersed generating sources, it is indispensable to consider their thermal merits in addition to electric power. After applying the Kuhn‐Tucker theory to the optimal dispatching problem including boiler fuel costs, thermal values of the dispersed generating units are evaluated quantitatively. Finally, the above‐mentioned technique for the optimal planning basically is also effective and is extended into this case. The validity of the proposed algorithms are demonstrated using a real‐scale model system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.