Muse cells may provide reparative effects and robust functional recovery and may, thus, provide a novel strategy for the treatment of acute myocardial infarction.
Background and Purpose Muse cells are endogenous non-tumorigenic stem cells with pluripotency harvestable as pluripotent marker SSEA-3+ cells from the bone marrow (BM) from cultured BM-mesenchymal stem cells (MSCs). After transplantation into neurological disease models, Muse cells exert repair effects, but the exact mechanism remains inconclusive. Methods We conducted mechanism-based experiments by transplanting serum/xeno-free cultured-human BM-Muse cells into the peri-lesion brain at two weeks after lacunar infarction in immunodeficient mice. Results Approximately 28% of initially transplanted Muse cells remained in the host brain at 8 weeks, spontaneously differentiated into cells expressing NeuN (~62%), MAP2 (~30%), and GST-pi (~12%). Dextran tracing revealed connections between host neurons and Muse cells at the lesioned motor cortex and the anterior horn. Muse cells extended neurites through the ipsilateral pyramidal tract, crossed to contralateral side and reached to the pyramidal tract in the dorsal funiculus of spinal cord. Muse-transplanted stroke mice displayed significant recovery in cylinder tests, which was reverted by the human-selective diphtheria toxin. At 10 months post-transplantation, human specific Alu sequence was detected only in the brain but not in other organs, with no evidence of tumor formation. Conclusions Transplantation at the delayed subacute phase showed Muse cells differentiated into neural cells, facilitated neural reconstruction, improved functions, and displayed solid safety outcomes over prolonged graft maturation period, indicating their therapeutic potential for lacunar stroke.
Muse cells, a novel type of nontumorigenic pluripotent-like stem cells, reside in the bone marrow, skin, and adipose tissue and are collectable as cells positive for pluripotent surface marker SSEA-3. They are able to differentiate into cells representative of all three germ layers. The capacity of intravenously injected human bone marrow-derived Muse cells to repair an immunodeficient mouse model of liver fibrosis was evaluated in this study. The cells exhibited the ability to spontaneously differentiate into hepatoblast/hepatocyte lineage cells in vitro. They demonstrated a high migration capacity toward the serum and liver section of carbon tetrachloride-treated mice in vitro. In vivo, they specifically accumulated in the liver, but not in other organs except, to a lesser extent, in the lungs at 2 weeks after intravenous injection in the liver fibrosis model. After homing, Muse cells spontaneously differentiated in vivo into HepPar-1 (71.1 ± 15.2%), human albumin (54.3 ± 8.2%), and anti-trypsin (47.9 ± 4.6%)-positive cells without fusing with host hepatocytes, and expressed mature functional markers such as human CYP1A2 and human Glc-6-Pase at 8 weeks after injection. Recovery in serum, total bilirubin, and albumin and significant attenuation of fibrosis were recognized with statistical differences between the Muse cell-transplanted group and the control groups, which received the vehicle or the same number of a non-Muse cell population of MSCs (MSCs in which Muse cells were eliminated). Thus, unlike ESCs and iPSCs, Muse cells are unique in their efficient migration and integration into the damaged liver after intravenous injection, nontumorigenicity, and spontaneous differentiation into hepatocytes, rendering induction into hepatocytes prior to transplantation unnecessary. They may repair liver fibrosis by two simple steps: expansion after collection from the bone marrow and intravenous injection. A therapeutic strategy such as this is feasible and may provide significant advancements toward liver regeneration in patients with liver disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.