Marine methane hydrate in sands has huge potential as an unconventional gas resource; however, no field test of their production potential had been conducted. Here, we report the world's first offshore methane hydrate production test conducted at the eastern Nankai Trough and show key findings toward future commercial production. Geological analysis indicates that hydrate saturation reaches 80% and permeability in the presence of hydrate ranges from 0.01 to 10 mdarcies. Permeable (1−10 mdarcies) highly hydrate-saturated layers enable depressurization-induced gas production of approximately 20,000 Sm 3 /D with water of 200 m 3 /D. Numerical analysis reveals that the dissociation zone expands laterally 25 m at the front after 6 days. Gas rate is expected to increase with time, owing to the expansion of the dissociation zone. It is found that permeable highly hydrate-saturated layers increase the gas−water ratio of the production fluid. The identification of such layers is critically important to increase the energy efficiency and the technical feasibility of depressurization-induced gas production from hydrate reservoirs.
Oceanic methane hydrate (MH) deposits have been found at high saturations within reservoir-quality sands in the Eastern Nankai Trough and the Gulf of Mexico. This study investigates the key factors for the success of depressurization-induced gas production from such oceanic MH deposits. A numerical simulator (MH21-HYDRES: MH21 Hydrate Reservoir Simulator) was used to study the performance of gas production from MH deposits. We calculated the hydrate dissociation behavior and gas/water production performance during depressurization for a hypothetical MH well. Simulation runs were conducted under various initial reservoir conditions of MH saturation, temperature, and absolute permeability. A productivity function (PF) was introduced as an indicator of gas productivity, which is a function of gas production rate, water production rate, and discount rate. The simulations showed that recovery factors over 36% and maximum gas production rates over 450 000 Sm 3 /d were expected for the most suitable conditions of a class 3 deposit (i.e., an isolated MH deposit that is not in contact with any hydrate-free zone of mobile fluids). However, gas productivity was affected by formation temperature and initial effective permeability. The values of PF increased with increasing formation temperature when the initial permeability of the deposit was higher than a threshold value (the threshold permeability); however, it decreased for the deposit below the threshold permeability. The threshold permeability was estimated to be between 1 and 10 mD in the class 3 deposit. These results suggest that key factors for the success of depressurization-induced gas production from oceanic MH are as follows: (1) The initial effective permeability of the MH deposit is higher than the threshold value, and (2) the temperature of the MH deposit is as high as possible.
Summary The Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) has been evaluating methane-hydrate (MH) reservoirs located in the eastern Nankai trough from the viewpoints of geology, geophysics, petrophysics, and reservoir/ production engineering. As one of these studies, we have been predicting gas/water production performances from these MH reservoirs showing diverse characteristics. This paper presents the results of our examinations on the applicability of a variety of MH dissociation/production methods to these MH reservoirs and on the feasibility of future development in terms of gas production and economics. Eastern Nankai trough MH reservoirs, which are composed of alternating beds of sand, silt, and clay in turbidite sediments, have various conditions of clay distribution and of initial pressure, temperature, permeability, and MH saturation. Some of these reservoirs contain MH of high saturation at a certain interval (MH concentrated reservoir), while in the others, MH is deposited sparsely (MH-nonconcentrated reservoir). Detailed numerical reservoir models were constructed for both MH-concentrated and -nonconcentrated reservoirs, consulting the well-log and seismic-interpretation results. MH-dissociation/-production performances were then predicted through numerical simulation, assuming the application of various MH-dissociation methods (such as depressurization, well-bore heating, hot-water huff'n'puff, and hot waterflooding. The simulation studies clarified the difference in the gas production between MH-concentrated and -nonconcentrated reservoirs. These studies also revealed that the permeability not only of sand layers but also of clay layers has a significant effect on the gas productivity from MH-concentrated reservoirs. Furthermore, it was suggested that the hot-water injection was effective when it was applied as a secondary-recovery method after depressurization. Simple economic analyses on the basis of these simulation results exhibited the promise that some MH reservoirs in the Eastern Nankai trough could be developed economically if the well spacing and MH-dissociation/-production methods were designed appropriately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.