Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012, and over 2000 infections and 800 deaths have been confirmed in 27 countries. However, to date, no commercial vaccine is available. In this study, structural proteins of MERS-CoV were expressed in silkworm larvae and Bm5 cells for the development of vaccine candidates against MERS-CoV and diagnostic methods. The spike (S) protein of MERS-CoV lacking its transmembrane and cytoplasmic domains (SΔTM) was secreted into the hemolymph of silkworm larvae using a bombyxin signal peptide and purified using affinity chromatography. The purified SΔTM forms small nanoparticles as well as the full-length S protein and has the ability to bind human dipeptidyl peptidase 4 (DPP4), which is a receptor of MERS-CoV. These results indicate that bioactive SΔTM was expressed in silkworm larvae. To produce MERS-CoV-like particles (MERS-CoV-LPs), the coexpression of spike proteins was performed in Bm5 cells and envelope (E) and membrane (M) proteins secreted E and M proteins extracellularly, suggesting that MERS-CoV-LPs may be formed. However, this S protein was not displayed on virus-like particles (VLPs) even though E and M proteins were secreted into the culture supernatant. By surfactant treatment and mechanical extrusion using S protein-or three structural protein-expressing Bm5 cells, S protein-displaying nanovesicles with diameters of approximately 100-200 nm were prepared and confirmed by immuno-TEM. The mechanical extrusion method is favorable for obtaining uniform recombinant protein-displaying nanovesicles from cultured cells. The purified SΔTM from silkworm larvae and S protein-displaying nanovesicles from Bm5 cells may lead to the development of nanoparticle-based vaccines against MERS-CoV and the diagnostic detection of MERS-CoV. DDP4, to inhibit the infection of cells by MERS-CoV (Corti et al., 2015;Jiang et al., 2014). In addition, the S protein and its receptor-binding domain are regarded as promising targets for the development of vaccines against MERS-CoV, even though no vaccine against MERS-CoV is yet commercially available (Ma et al., 2014a, b). The M protein of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) forms enveloped virus-like particles (VLPs) when
The flap facilitated discrimination of the effects of ischemia and congestion. This new rat skin flap model is simple and easy to construct, and has a consistent flap survival rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.