Gonadotropin-releasing hormone (GnRH) neurons in the basal forebrain are the final common pathway through which the brain regulates reproduction. GnRH secretion occurs in a pulsatile manner, and indirect evidence suggests the kisspeptin neurons in the arcuate nucleus (ARC) serve as the central pacemaker that drives pulsatile GnRH secretion. The purpose of this study was to investigate the possible coexpression of kisspeptin, neurokinin B (NKB), and dynorphin A (Dyn) in neurons of the ARC of the goat and evaluate their potential roles in generating GnRH pulses. Using double and triple labeling, we confirmed that all three neuropeptides are coexpressed in the same population of neurons. Using electrophysiological techniques to record multiple-unit activity (MUA) in the medial basal hypothalamus, we found that bursts of MUA occurred at regular intervals in ovariectomized animals and that these repetitive bursts (volleys) were invariably associated with discrete pulses of luteinizing hormone (LH) (and by inference GnRH). Moreover, the frequency of MUA volleys was reduced by gonadal steroids, suggesting that the volleys reflect the rhythmic discharge of steroid-sensitive neurons that regulate GnRH secretion. Finally, we observed that central administration of Dyn-inhibit MUA volleys and pulsatile LH secretion, whereas NKB induced MUA volleys. These observations are consistent with the hypothesis that kisspeptin neurons in the ARC drive pulsatile GnRH and LH secretion, and suggest that NKB and Dyn expressed in those neurons are involved in the process of generating the rhythmic discharge of kisspeptin.
Pulsatile release of gonadotrophin-releasing hormone (GnRH) is indispensable to maintain normal gonadotrophin secretion. The pulsatile secretion of GnRH is associated with synchronised electrical activity in the mediobasal hypothalamus (i.e. multiple unit activity; MUA), which is considered to reflect the rhythmic oscillations in the activity of the neuronal network that drives pulsatile GnRH secretion. However, the cellular source of this ultradian rhythm in GnRH activity is unknown. Direct input from kisspeptin neurones in the arcuate nucleus (ARC) to GnRH cell bodies in the medial preoptic area or their terminals in the median eminence could be the intrinsic source for driving the GnRH pulse generator. To determine whether kisspeptin signalling could be responsible for producing pulsatile GnRH secretion, we studied goats, measured plasma levels of luteinising hormone (LH) and recorded MUA in the posterior ARC, where the majority of kisspeptin neuronal cell bodies are located. Rhythmic volleys of MUA were found to be accompanied by LH pulses with regular intervals in the ARC, where kisspeptin neuronal cell bodies were found. Exogenous administration of kisspeptin stimulated a sustained increase in LH secretion, without influencing MUA, suggesting that the GnRH pulse generator, as reflected by MUA, originated from outside of the network of GnRH neurones, and could plausibly reflect the pacemaker activity of kisspeptin neurones, whose projections reach the median eminence where GnRH fibres project. These observations suggest that the kisspeptin neurones in the ARC may be the intrinsic source of the GnRH pulse generator.
Proliferative diabetic retinopathy (PDR) is the most severe form of diabetic retinopathy and, along with diabetic macular edema, is responsible for the majority of blindness in adults below the age of 65. Therapeutic strategies for PDR are ineffective at curtailing disease progression in all cases; however a deeper understanding of the ocular metabolic landscape in PDR through metabolomic analysis may offer new therapeutic targets. Here, global and targeted mass spectrometry-based metabolomics were used to investigate metabolism. Initial analyses on vitreous humor from patients with PDR (n = 9) and non-diabetic controls (n = 11) revealed an increase of arginine and acylcarnitine metabolism in PDR. The oxygen-induced-retinopathy (OIR) mouse model, which exhibits comparable pathological manifestations to human PDR, revealed similar increases of arginine and other metabolites in the urea cycle, as well as downregulation of purine metabolism. We validated our findings by targeted multiple reaction monitoring and through the analysis of a second set of patient samples [PDR (n = 11) and non-diabetic controls (n = 20)]. These results confirmed a predominant and consistent increase in proline in both the OIR mouse model and vitreous samples from patients with PDR, suggesting that over activity in the arginine-to-proline pathway could be used as a therapeutic target in diabetic retinopathy.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-015-0877-5) contains supplementary material, which is available to authorized users.
Vascular endothelial growth factor and also angiogenin, IP-10, MCP-1, MIP-1β, and Mig may be related to the pathogenesis of age-related macular degeneration. Intravitreal bevacizumab injection increases inflammatory cytokine levels, suggesting the induction of an inflammatory process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.