The Superconducting Submillimeter‐Wave Limb‐Emission Sounder (SMILES) was successfully launched and attached to the Japanese Experiment Module (JEM) on the International Space Station (ISS) on 25 September 2009. It has been making atmospheric observations since 12 October 2009 with the aid of a 4 K mechanical cooler and superconducting mixers for submillimeter limb‐emission sounding in the frequency bands of 624.32–626.32 GHz and 649.12–650.32 GHz . On the basis of the observed spectra, the data processing has been retrieving vertical profiles for the atmospheric minor constituents in the middle atmosphere, such as O3 with isotopes, HCl, ClO, HO2, BrO, and HNO3. Results from SMILES have demonstrated its high potential to observe atmospheric minor constituents in the middle atmosphere. Unfortunately, SMILES observations have been suspended since 21 April 2010 owing to the failure of a critical component.
We observed ozone (O3) in the vertical region between 250 and 0.0005 hPa (~ 12–96 km) using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the Japanese Experiment Module (JEM) of the International Space Station (ISS) between 12 October 2009 and 21 April 2010. The new 4 K superconducting heterodyne receiver technology of SMILES allowed us to obtain a one order of magnitude better signal-to-noise ratio for the O3 line observation compared to past spaceborne microwave instruments. The non-sun-synchronous orbit of the ISS allowed us to observe O3 at various local times. We assessed the quality of the vertical profiles of O3 in the 100–0.001 hPa (~ 16–90 km) region for the SMILES NICT Level 2 product version 2.1.5. The evaluation is based on four components: error analysis; internal comparisons of observations targeting three different instrumental setups for the same O3 625.371 GHz transition; internal comparisons of two different retrieval algorithms; and external comparisons for various local times with ozonesonde, satellite and balloon observations (ENVISAT/MIPAS, SCISAT/ACE-FTS, Odin/OSIRIS, Odin/SMR, Aura/MLS, TELIS). SMILES O3 data have an estimated absolute accuracy of better than 0.3 ppmv (3%) with a vertical resolution of 3–4 km over the 60 to 8 hPa range. The random error for a single measurement is better than the estimated systematic error, being less than 1, 2, and 7%, in the 40–1, 80–0.1, and 100–0.004 hPa pressure regions, respectively. SMILES O3 abundance was 10–20% lower than all other satellite measurements at 8–0.1 hPa due to an error arising from uncertainties of the tangent point information and the gain calibration for the intensity of the spectrum. SMILES O3 from observation frequency Band-B had better accuracy than that from Band-A. A two month period is required to accumulate measurements covering 24 h in local time of O3 profile. However such a dataset can also contain variation due to dynamical, seasonal, and latitudinal effects
We present a characterization of a 1.5 THz waveguide niobium titanium nitride (NbTiN) superconducting hot electron bolometer (HEB) mixer which can be pumped by a commercial solid state tunable local oscillator (LO) source. The NbTiN HEB mixer is made from a 12 nm thick NbTiN thin film deposited on a quartz substrate at room temperature. A gold electrode is formed in situ on the NbTiN thin film without breaking vacuum to ensure good contact. The uncorrected DSB receiver noise temperature is measured to be 1700 K at 1.5 THz, whereas the mixer noise temperature is derived to be 1000 K after corrections for losses of the input optics and the intermediate frequency (IF) amplifier chain. The required LO power absorbed in the HEB mixer is evaluated to be 340 nW by using an isothermal technique. The IF gain bandwidth is supposed to be about 1.3 GHz or higher. The present results show that good performance can be obtained at 1.5 THz even with a relatively thick NbTiN film (12 nm), as in the case of 0.8 THz. In order to investigate the cooling mechanism of our HEB mixers, we have conducted performance measurements for a few HEB mixers with different microbridge sizes both at 1.5 and 0.8 THz. The noise performance of the NbTiN HEB mixers is found to depend on the length of the NbTiN microbridge. The shorter the microbridge is, the lower the receiver noise temperature is. This may imply a contribution of the diffusion cooling in addition to the phonon cooling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.