The majority of breast cancers express the estrogen receptor (ERα) and agents targeting this pathway represent the main treatment modality. Endocrine therapy has proven successful in the treatment of hormone-responsive breast cancer since its early adoption in the 1940s as an ablative therapy. Unfortunately, therapeutic resistance arises, leading to disease recurrence and relapse. Recent studies increased our understanding in how changes to the chromatin landscape and deregulation of epigenetic factors orchestrate the resistant phenotype. Here, we will discuss how the epigenome is an integral determinant in hormone therapy response and why epigenetic factors are promising targets for overcoming clinical resistance.
Purpose: Epigenetic deregulation is deeply implicated in the pathogenesis of bladder cancer. KDM6A (Lysine (K)-specific demethylase 6A) is a histone modifier frequently mutated in bladder cancer. However, the molecular mechanisms of how KDM6A deficiency contributes to bladder cancer development remains largely unknown. We hypothesized that clarification of the pathogenic mechanisms underlying KDM6A-mutated bladder cancer can help in designing new anticancer therapies. Experimental Design: We generated mice lacking Kdm6a in the urothelium and crossed them with mice heterozygous for p53, whose mutation/deletion significantly overlaps with the KDM6A mutation in muscle-invasive bladder cancer (MIBC). In addition, BBN (N-butyl-N-(4-hydroxybutyl) nitrosamine), a cigarette smoke-like mutagen, was used as a tumor-promoting agent. Isolated urothelia were subjected to phenotypic, pathologic, molecular, and cellular analyses. The clinical relevance of our findings was further analyzed using genomic and clinical data of patients with MIBC. Results: We found that Kdm6a deficiency activated cytokine and chemokine pathways, promoted M2 macrophage polarization, increased cancer stem cells and caused bladder cancer in cooperation with p53 haploinsufficiency. We also found that BBN treatment significantly enhanced the expression of proinflammatory molecules and accelerated disease development. Human bladder cancer samples with decreased KDM6A expression also showed activated proinflammatory pathways. Notably, dual inhibition of IL6 and chemokine (C-C motif) ligand 2, upregulated in response to Kdm6a deficiency, efficiently suppressed Kdm6a-deficient bladder cancer cell growth. Conclusions: Our findings provide insights into multistep carcinogenic processes of bladder cancer and suggest molecular targeted therapeutic approaches for patients with bladder cancer with KDM6A dysfunction.
• Fbxl10 is a bona fide oncogene in vivo. • Fbxl10 overexpression inHSCs induces mitochondrial metabolic activation and enhanced expression of Nsg2.We previously reported that deficiency for Samd9L, which was cloned as a candidate gene for 27/7q2 syndrome, accelerated leukemia cooperatively with enhanced expression of a histone demethylase: F-box and leucine-rich repeat protein 10 (Fbxl10, also known as Jhdm1b, Kdm2b, and Ndy1). To further investigate the role of Fbxl10 in leukemogenesis, we generated transgenic (Tg) mice that overexpress Fbxl10 in hematopoietic stem cells (HSCs). Interestingly, Fbxl10 Tg mice developed myeloid or B-lymphoid leukemia with complete penetrance. HSCs from the Tg mice exhibited an accelerated G0/G1-to-S transition with a normal G0 to G1 entry, resulting in pleiotropic progenitor cell expansion. Fbxl10 Tg HSCs displayed enhanced expression of neuron-specific gene family member 2 (Nsg2), and forced expression of Nsg2 in primary bone marrow cells resulted in expansion of immature cells. In addition, the genes involved in mitochondrial oxidative phosphorylation were markedly enriched in Fbxl10 Tg HSCs, coupled with increased cellular adenosine 59-triphosphate levels. Moreover, chromatin immunoprecipitation followed by sequencing analysis demonstrated that Fbxl10 directly binds to the regulatory regions of Nsg2 and oxidative phosphorylation genes. These findings define Fbxl10 as a bona fide oncogene, whose deregulated expression contributes to the development of leukemia involving metabolic proliferative advantage and Nsg2-mediated impaired differentiation. (Blood. 2015;125(22):3437-3446) IntroductionAppropriate patterns of epigenetic alterations in histone modifications are required to assure cell identity, and their deregulation can contribute to human diseases such as cancer. 1 We previously generated knockout mice for Samd9L (which was cloned as a candidate gene for the 27/7q2 syndrome frequently that is observed in myelodysplastic syndrome and acute leukemia patients) and demonstrated that mice deficient in Samd9L developed leukemia after a long latent period. 2 In addition, retroviral insertional mutagenesis revealed that the onset of the disease was highly accelerated with upregulation of F-box and leucine-rich repeat protein 10 (Fbxl10) or ectopic virus integration 1 (Evi1). 2 Clinically, an elevated expression of Fbxl10 is observed in patients with acute myeloid leukemia (AML) or acute lymphoid leukemia (ALL), seminoma, and pancreatic ductal adenocarcinoma. [3][4][5][6] These findings prompted us to further investigate the role of Fbxl10 in leukemia development in vivo.Fbxl10 belongs to the JmjC domain-containing histone demethylases, and contains an N-terminal JmjC domain, followed by a CXXC zinc finger domain, a plant homeodomain finger, an F-box, and 8 leucine-rich repeats. 7 Fbxl10 preferentially demethylates the dimethylation of histone H3 at lysine 36 (H3K36me2), but not H3K36me1 and H3K36me3. 6,8 Fbxl10 was also recently reported to mediate the monoubiquitination of t...
A20 is a negative regulator of NF-κB, and mutational loss of A20 expression is involved in the pathogenesis of autoimmune diseases and B-cell lymphomas. To clarify the role of A20 in adult hematopoiesis, we generated conditional A20 knockout mice (A20flox/flox) and crossed them with Mx–1Cre (MxCre +) and ERT2Cre (ERT2Cre +) transgenic mice in which Cre is inducibly activated by endogenous interferon and exogenous tamoxifen, respectively. A20flox/flox MxCre + (A20Mx) mice spontaneously exhibited myeloid proliferation, B cell apoptosis, and anemia with overproduction of pro-inflammatory cytokines. Bone marrow transplantation demonstrated that these changes were caused by hematopoietic cells. NF-κB was constitutively activated in A20Mx hematopoietic stem cells (HSCs), which caused enhanced cell cycle entry and impaired repopulating ability. Tamoxifen stimulation of A20flox/flox ERT2Cre + (A20ERT2) mice induced fulminant apoptosis and subsequent myeloproliferation, lymphocytopenia, and progressive anemia with excessive production of pro-inflammatory cytokines, as observed in A20Mx mice. These results demonstrate that A20 plays essential roles in the homeostasis of adult hematopoiesis by preventing apoptosis and inflammation. Our findings provide insights into the mechanism underlying A20 dysfunction and human diseases in which A20 expression is impaired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.