To facilitate cardiac muscle research, we developed a novel method by which the force and length of a single ventricular myocyte can be recorded with a pair of carbon graphite fibers attached firmly to both ends. One fiber was stiff, whereas the other fiber was compliant to allow the recording of force and shortening during twitch contractions. The image of the compliant carbon fiber was projected onto a pair of photodiodes, and their output was fed to a piezoelectric transducer after variable amplifications to alter the effective compliance of the carbon fiber. Thus contraction of the myocyte was induced under virtually isometric conditions as well as under auxotonic conditions. We obtained a bell-shaped relation between the compliance under an auxotonic load and the work output of the myocyte, which was directly related to myocyte performance in the heart. Because it is easy to attach myocytes to the experimental apparatus, the present method would allow us to study cardiac muscle mechanics at the cellular and molecular levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.