We consider mean curvature flow of n-dimensional surface clusters. At (n − 1)-dimensional triple junctions an angle condition is required which in the symmetric case reduces to the well-known 120 degree angle condition. Using a novel parametrization of evolving surface clusters and a new existence and regularity approach for parabolic equations on surface clusters we show local well-posedness by a contraction argument in parabolic Hölder spaces.
Abstract. The linearized stability of stationary solutions to the surface diffusion flow with angle conditions and no-flux conditions as boundary conditions is studied. We perform a linearized stability analysis in which the H −1 -gradient flow structure plays a key role. As a byproduct our analysis also gives a criterion for the stability of critical points of the length functional of curves which come into contact with the outer boundary. Finally, we study the linearized stability of several examples.
We prove that the sharp interface model for a three-phase boundary motion by surface diffusion proposed by H. Garcke and A. Novick-Cohen admits a unique global solution provided the initial data fulfils a certain symmetric criterion and is also close to a minimizer of the energy under an area constraint. This minimizer is also a stationary solution of the present model. Moreover, we prove that the global solution converges to the minimizer of the energy as time goes to infinity.
Abstract. The volume preserving fourth order surface diffusion flow has constant mean curvature hypersurfaces as stationary solutions. We show nonlinear stability of certain stationary curves in the plane which meet an exterior boundary with a prescribed contact angle. Methods include semigroup theory, energy arguments, geometric analysis and variational calculus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.