Vascular endothelial cells play important roles in atherogenesis, and bradykinin is associated with atherosclerosis. The effect of bradykinin on apoptosis in human umbilical vein endothelial cells (HUVECs) was investigated, with a focus on Ca2+ kinetics and nitric oxide production. In serum-free conditions, the number of apoptotic cells increased in a time-dependent manner, but this increase was inhibited by bradykinin in a dose-dependent manner. The apoptosis inhibited by bradykinin was reduced by nitric oxide inhibitor N(G)-monomethyl-L-arginine (L-NMMA) and consequently restored by combined treatment with L-NMMA and L-arginine. Bradykinin increased influx of extracellular Ca2+, generation of inositol 1,4,5-trisphosphate, and release of Ca2+ from intracellular storage sites, thus increasing the total intracellular Ca2+ concentration ([Ca2+]i). Bradykinin increased nitric oxide production, which was inhibited by L-NMMA and restored by combined treatment with L-NMMA and L-arginine. Sodium nitroprusside (SNP) dose-dependently increased nitric oxide production and inhibited apoptosis; however, 10(-5) M SNP did not inhibit apoptosis. Caspase-3 inhibitor, acetyl-Asp-Met-Gln-Asp-aldehyde, enhanced bradykinin-induced inhibition of apoptosis but did not effect bradykinin-induced nitric oxide production. These findings suggest that bradykinin inhibits serum-depletion-induced apoptosis in HUVECs by enhancing nitric oxide production via an increase in [Ca2+]i.
The effects of bradykinin on the regulatory mechanisms of prostacyclin synthesis in endothelial cells were investigated in association with intracellular Ca(2+) kinetics, cytosolic phospholipase A(2) (cPLA(2)) activity, and mRNA expression of cPLA(2) and prostaglandin H synthase (PGHS) isoforms. Bradykinin enhanced prostacyclin release from endothelial cells time-dependently, but pretreatment with EGTA H-7 or HOE 140 inhibited bradykinin-induced prostacyclin release. Bradykinin increased both the influx of extracellular Ca(2+) and Ca(2+) release from the intracellular Ca(2+) storage sites. These reactions occurred within 5 minutes after bradykinin stimulation. Within 15 minutes, bradykinin activated cPLA(2) to 1.3-fold the control level. The constitutive expressions of mRNA of cPLA(2), PGHS-1, and PGHS-2 was 87, 562, and 47 amol/microg RNA, respectively. With the stimulation of bradykinin, cPLA(2) mRNA increased to 746 amol/microg RNA in 15 minutes, PGHS-1 mRNA increased to 10 608 amol/microg RNA, and PGHS-2 mRNA increased to 22 400 amol/microg RNA in 180 minutes. Pretreatment with cycloheximide superinduced cPLA(2) and PGHS-2 mRNA expression but almost completely inhibited PGHS-1. Pretreatment with EGTA had effects similar to pretreatment with cycloheximide in the case of cPLA(2) and PGHS-1 but did not affect PGHS-2. These findings suggest that the elevation of cPLA(2) activity caused by the increase of intracellular Ca(2+) concentration is important in the early phase of bradykinin-induced prostacyclin synthesis and that the mechanisms regulating cPLA(2) are different from those regulating PGHS isoforms in endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.