Accurate estimates of the burden of SARS-CoV-2 infection are critical to informing pandemic response. Confirmed COVID-19 case counts in the U.S. do not capture the total burden of the pandemic because testing has been primarily restricted to individuals with moderate to severe symptoms due to limited test availability. Here, we use a semi-Bayesian probabilistic bias analysis to account for incomplete testing and imperfect diagnostic accuracy. We estimate 6,454,951 cumulative infections compared to 721,245 confirmed cases (1.9% vs. 0.2% of the population) in the United States as of April 18, 2020. Accounting for uncertainty, the number of infections during this period was 3 to 20 times higher than the number of confirmed cases. 86% (simulation interval: 64–99%) of this difference is due to incomplete testing, while 14% (0.3–36%) is due to imperfect test accuracy. The approach can readily be applied in future studies in other locations or at finer spatial scale to correct for biased testing and imperfect diagnostic accuracy to provide a more realistic assessment of COVID-19 burden.
Background Previous blinded trials of household water treatment interventions in low-income settings have failed to detect a reduction in child diarrhoea. Technological advances have enabled the development of automated in-line chlorine dosers that can disinfect drinking water without electricity, while also allowing users to continue their typical water collection practices. We aimed to evaluate the effect of installing novel passive chlorination devices at shared water points on child diarrhoea prevalence in low-income, densely populated communities in urban Bangladesh. Methods In this double-blind cluster-randomised controlled trial, 100 shared water points (clusters) in two low-income urban communities in Bangladesh were randomly assigned (1:1) to have their drinking water automatically chlorinated at the point of collection by a solid tablet chlorine doser (intervention group) or to be treated by a visually identical doser that supplied vitamin C (active control group). The trial followed an open cohort design; all children younger than 5 years residing in households accessing enrolled water points were measured every 2-3 months during a 14-month follow-up period (children could migrate into or out of the cluster). The primary outcome was caregiverreported child diarrhoea (≥3 loose or watery stools in a 24-h period [WHO criteria]) with a 1-week recall, including all available childhood observations in the analyses. This trial is registered with ClinicalTrials.gov, number NCT02606981, and is completed.
The World Health Organization and the United States Centers for Disease Control have recommended universal face masking by the general public to slow the spread of COVID-19. A number of recent studies have evaluated the filtration efficiency and pressure differential (an indicator of breathability) of various, widely available materials that the general public can use to make face masks at home. In this review, we summarize those studies to provide guidance for both the public to select the best materials for face masks and for future researchers to rigorously evaluate and report on mask material testing. Of the tested fabric materials and material combinations with adequate breathability, most single and multilayer combinations had a filtration efficiency of <30%. Most studies evaluating commonly available mask materials did not follow standard methods that would facilitate comparison across studies, and materials were often described with too few details to allow consumers to purchase equivalent materials to make their own masks. To improve the usability of future study results, researchers should use standard methods and report material characteristics in detail.
The number of people served by networked systems that supply intermittent and contaminated drinking water is increasing. In these settings, centralized water treatment is ineffective, while household-level water treatment technologies have not been brought to scale. This study compares a novel low-cost technology designed to passively (automatically) dispense chlorine at shared handpumps with a household-level intervention providing water disinfection tablets (Aquatab), safe water storage containers, and behavior promotion. Twenty compounds were enrolled in Dhaka, Bangladesh, and randomly assigned to one of three groups: passive chlorinator, Aquatabs, or control. Over a 10-month intervention period, the mean percentage of households whose stored drinking water had detectable total chlorine was 75% in compounds with access to the passive chlorinator, 72% in compounds receiving Aquatabs, and 6% in control compounds. Both interventions also significantly improved microbial water quality. Aquatabs usage fell by 50% after behavioral promotion visits concluded, suggesting intensive promotion is necessary for sustained uptake. The study findings suggest high potential for an automated decentralized water treatment system to increase consistent access to clean water in low-income urban communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.