A numerical model and computational procedure for static recrystallization are developed using a phase-field method coupled with crystal-plasticity theory. In this model, first, the microstructure and dislocation density during the deformation process of a polycrystalline metal are simulated using a finite element method based on strain-gradient crystal-plasticity theory. Second, the calculated data are mapped onto the regular grids used in the phase-field simulation. The stored energy is calculated from the dislocation density and is smoothed to avoid computational difficulty. Furthermore, the misorientation required for nucleation criteria is calculated at all grid points. Finally, phase-field simulation of the nucleation and growth of recrystallization is performed using the mapped data. By performing a series of numerical simulations based on the proposed numerical procedure, it has been confirmed that the recrystallization microstructure can be reproduced from the deformation microstructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.