Vanadium haloperoxidases catalyze the oxidation of halides by hydrogen peroxide to produce hypohalous acid. We demonstrate that these enzymes also slowly mediate the enantioselective oxidation of organic sulfides (methyl phenyl sulfide, methyl p-tolyl sulfide, and 1-methoxy-4 (methylthio)benzene) to the corresponding sulfoxides (turnover frequency 1 min(-)(1)). The vanadium bromoperoxidase from the brown seaweed Ascophyllum nodosum converts methyl phenyl sulfide to the (R)-enantiomer of the sulfoxide (55% yield and 85% enantiomeric excess (ee)). At low peroxide concentrations a selectivity of 91% can be attained. The enzyme catalyzes the selective sulfoxidation reaction over a broad pH range with an optimum around pH 5-6 and remains completely functional during the reaction. When the vanadium bromoperoxidase from the red seaweed Corallina pilulifera is used the (S)-enantiomer (18% yield and 55% ee) is formed. In contrast, the vanadium chloroperoxidase from the fungus Curvularia inaequalis catalyzes the production of a racemic mixture (54% yield), which seems to be an intrinsic characteristic of this enzyme.
A dibenzothiophene (DBT)-degrading bacterium, Rhodococcus erythropolis D-1, which utilized DBT as a sole source of sulfur, was isolated from soil. DBT was metabolized to 2-hydroxybiphenyl (2-HBP) by the strain, and 2-HBP was almost stoichiometrically accumulated as the dead-end metabolite of DBT degradation. DBT degradation by this strain was shown to proceed as DBT-* DBT sulfone-2-HBP. DBT at an initial concentration of 0.125 mM was completely degraded within 2 days of cultivation. DBT at up to 2.2 mM was rapidly degraded by resting cells within only 150 min. It was thought this strain had a higher DBTdesulfurizing ability than other microorganisms reported previously.
Differentiation-inducing factor-1 (DIF-1) is a chlorinated hexaphenone isolated from Dictyostelium. DIF-1 exhibits antitumor activity in several types of mammalian tumor cells, although the underlying mechanisms remain unknown. On the other hand, recent studies indicate that constitutively activated STAT3 acts as an oncogene and could be a target for antitumor drug. In the present study, we examined the effects of DIF-1 on proliferation of gastric cancer cell lines as well as on its signal transduction pathways, focusing mainly on STAT proteins. DIF-1 inhibited proliferation of gastric cancer cells. Western blot analysis and electrophoretic mobility shift assay showed that DIF-1 inhibited STAT3 activity in an MEK-ERK-dependent manner in gastric cancer cell lines, AGS and MKN28. Moreover, blockade of STAT3 activity by ectopic expression of dominant-negative STAT3 or the Janus kinase inhibitor, tyrphostin AG490, inhibited cell growth of AGS cells. These results suggest that STAT3 activity plays an important role for cell growth in AGS cells, and raises the possibility that inhibition of STAT3 activity is one of the mechanisms responsible for the antitumor effect of DIF-1 in these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.