A growing body of evidence has been accumulated recently suggesting that growth hormone (GH) and insulin-like growth factor-1 (IGF-1) affect cardiac function, but their mechanism(s) of action is unclear. In the present study, GH and IGF-1 were administered to isolated isovolumic aequorin-loaded rat whole hearts and ferret papillary muscles. Although GH had no effect on the indices of cardiac function, IGF-1 increased isovolumic developed pressure by 24% above baseline. The aequorin transients were abbreviated and demonstrated decreased amplitude. The positive inotropic effects of IGF-1 were not associated with increased intracellular Ca2+ availability to the contractile machinery but to a significant increase of myofilament Ca2+ sensitivity. Accordingly, the Ca2+-force relationship obtained under steady-state conditions in tetanized muscle was shifted significantly to the left (EC50, 0.44+/-0.02 versus 0.52+/-0.03 micromol/L with and without IGF-1 in the perfusate, respectively; P<0.05); maximal Ca2+-activated tetanic pressure was increased significantly by 12% (211+/-3 versus 235+/-2 mm Hg in controls and IGF-1-treated hearts, respectively; P<0.01). The positive inotropic actions of IGF-1 were not associated with changes in either pHi or high-energy phosphate content, as assessed by 31P nuclear magnetic resonance spectroscopy, and were blocked by the phosphatidylinositol 3-kinase inhibitor wortmannin. Concomitant administration of IGF binding protein-3 blocked IGF-1-positive inotropic action in ferret papillary muscles. In conclusion, IGF-1 is an endogenous peptide that through a wortmannin-sensitive pathway displays distinct positive inotropic properties by sensitizing the myofilaments to Ca2+ without increasing myocyte [Ca2+]i.
Excess microtubule density, therefore, is equally important to both cellular and to myocardial contractile dysfunction caused by chronic, severe pressure-overload cardiac hypertrophy.
The authors could not determine whether interaction in blocking somatic responses in 50% of patients is additive. The MAC of xenon is in the range of the values that were predicted in a previous study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.