Solvate ionic liquids (ILs) such as binary equimolar mixtures of glymes (ethyleneglycol-dimethylether or CH3(OCH2CH2)
n
OCH3) and lithium bis(trifluoromethylsulfonyl)amide (LiTf2N; Tf = SO2CF3) are known to show identical self-diffusion coefficients for glymes and Li+ ions. Here, we report that the addition of LiTf2N to the solvate ILs drastically changes their electrolyte properties. When the lithium salts are added to give the super-concentrated electrolytes with [O]/[Li+] = 3 (molar ratio of ether oxygen to Li+), ligand exchange or hopping conduction of Li+ takes place for triglyme (G3; n = 3) and tetraglyme (G4; n = 4). In addition, the Li+ transference number t
Li+(EC), electrochemically measured under anion blocking conditions, increases about 3–6 times compared with the solvate ILs. Consequently, segmental motion of glymes apparently affects the transport properties even for the shorter G3 in the super-concentrated region. The relationship between the coordination structure and the transport properties are also discussed as a function of ionicity, the extent of the contribution of self-diffusion to the actual ion conduction. Plots vs ionicity demonstrate that a clear line can be drawn between the solvate ILs and the super-concentrated electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.