Pulmonary hypertension (PH) has been shown to be associated with regional inhomogeneity (or dyssynchrony) of right ventricular (RV) contraction. Right ventricular dyssynchrony is an independent predictor of decreased survival in advanced PH, but has also been reported in patients with only mildly elevated pulmonary artery pressure (PAP). The mechanisms of RV dyssynchrony in PH remain uncertain. Our aim was to evaluate RV regional function in healthy subjects during acute hypoxia and during exercise. Seventeen healthy subjects (24 ± 6 years) underwent a speckle tracking echocardiography of the RV at rest in normoxia and every 15 min during a 60 min exposure to hypoxic breathing ( 12%). Ten of the subjects also underwent an incremental cycle ergometry in normoxia to 100 W, with the same echocardiographic measurements. Dyssynchrony was measured as the SD of the times to peak systolic strain of the four basal and mid RV segments corrected for the heart rate (RV-SD4). RV-SD4 increased during hypoxia from 12 ± 7 to 22 ± 11 ms in spite of mild increases in mean PAP (mPAP) from 15 ± 2 to 20 ± 2 mmHg and pulmonary vascular resistance (PVR) from 1.18 ± 0.15 to 1.4 ± 0.15 Wood units (WU). During exercise RV-SD4 did not significantly change (from 12 ± 6 ms to 14 ± 6 ms), while mPAP increased to 25 ± 2 mmHg and PVR was unchanged. These data show that in healthy subjects, RV contraction is inhomogeneous in hypoxia but not during exercise. Since PAP increases more during exercise, RV dyssynchrony in hypoxia may be explained by a combination of mechanical (RV afterload) and systemic (hypoxia) factors.
There has been revival of interest in exercise testing of the pulmonary circulation for the diagnosis of pulmonary vascular disease, but there still is uncertainty about body position and the most relevant measurements. Doppler echocardiography pulmonary hemodynamic measurements were performed at progressively increased workloads in 26 healthy adult volunteers in supine, semirecumbent, and upright positions that were randomly assigned at 24-h intervals. Mean pulmonary artery pressure (mPAP) was estimated from the maximum tricuspid regurgitation jet velocity. Cardiac output was calculated from the left ventricular outflow velocity-time integral. Pulmonary vascular distensibility α-index, the percent change of vessel diameter per millimeter mercury of mPAP, was calculated from multipoint mPAP-cardiac output plots. Body position did not affect maximum oxygen uptake (Vo), maximum respiratory exchange ratio, ventilatory equivalent for carbon dioxide, or slope of mPAP-cardiac output relationships, which was on average of 1.5 ± 0.4 mmHg·l·min Maximum mPAP, cardiac output, and total pulmonary vascular resistance were, respectively, 34 ± 4 mmHg, 18 ± 3 l/min, and 1.9 ± 0.3 Wood units. However, the semirecumbent position was associated with a 10% decrease in maximum workload. Furthermore, cardiac output-workload or cardiac output-Vo relationships were nonlinear and variable. These results suggest that body position does not affect maximum exercise testing of the pulmonary circulation when results are expressed as mPAP-cardiac output or maximum total pulmonary vascular resistance. Maximum workload is decreased in semirecumbent compared with upright exercise. Workload or Vo cannot reliably be used as surrogates for cardiac output.
Aims To explore the effects of age and sex in adolescents vs. young or middle-aged adults on pulmonary vascular function and right ventricular-arterial (RV-PA) coupling as assessed by exercise stress echocardiography. Methods and results Forty healthy adolescents aged 12–15 years were compared with 40 young adults aged 17–22 years and 40 middle-aged adults aged 30–50 years. Sex distribution was equal in the three groups. All the subjects underwent an exercise stress echocardiography. A pulmonary vascular distensibility coefficient α was determined from multipoint pulmonary vascular pressure–flow relationships. RV-PA coupling was assessed by the tricuspid annular plane systolic excursion (TAPSE) to systolic pulmonary artery pressure (PASP) ratio, who has been previously validated by invasive study. While cardiac index and mean PAP were not different, adolescents compared to young and middle-aged adults, respectively had higher pulmonary vascular distensibility coefficients α (1.60 ± 0.31%/mmHg vs. 1.39 ± 0.29%/mmHg vs. 1.20 ± 0.35%/mmHg, P < 0.00001). Adolescents and young adults compared to middle-aged adults, respectively had higher TAPSE/PASP ratios at rest (1.24 ± 0.18 mm/mmHg and 1.22 ± 0.17 mm/mmHg vs. 1.07 ± 0.18 mm/mmHg, P < 0.008) and during exercise (0.86 ± 0.24, 0.80 ± 0.15 and 0.72 ± 0.15 mm/mmHg, P < 0.04). The TAPSE/PASP ratio decreased with exercise. There were no sex differences in α or TAPSE/PASP. Conclusion Compared to adults, adolescents present with a sex-independent more distensible pulmonary circulation. Resting and exercise RV-PA coupling is decreased in middle-aged adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.