A three-dimensional (3-D) vertical chain-cell-type phase-change memory (VCCPCM) for next-generation large-capacity storage was developed. The VCCPCM features formation of memory holes in multi-layered stacked gates by using a single mask and a memory array without a selection transistor. As a result of this configuration, the number of process steps for fabricating the VCCPCM is reduced. The excellent scalability of the VCCPCM's new phase-change material makes it possible to reduce the cell size beyond the scaling limit of flash memory. In addition, a poly-silicon selection diode makes it possible to reduce the cell factor to 4F 2 . Consequently, relative cost of the VCCPCM compared to 3-D flash memory is reduced to 0.2.
IntroductionThe most important requirement for the storage-memory market is reduction of bit cost, and that requirement has been met by reducing the cell size of flash memory. However, high-voltage operation of flash memory makes it difficult to further reduce cell size. It has recently been reported that the bit-cost reduction can be continued by utilizing 3-D flash memory [1]. 3-D flash memory needs fewer process steps compared to simple stacking of flash memory, but reducing cell size is difficult for two reasons. Firstly, a 20-nm-thick ONO layer in the memory hole is needed and, secondly, a vertical poly-silicon selection MOS transistor needs a cell factor of 6F 2 [1]. In this work, a vertical chain-cell-type phase-change memory (VCCPCM), which can overcome these problems concerning 3-D flash in view of bit cost, is proposed. The key technologies of this VCCPCM are (1) a vertical chain cell for reducing the number of process steps, (2) a scalable new phase-change material for reducing cell size, and (3) a poly-Si XY-selection diode for reducing cell factor to 4F 2 . A poly-Si diode [2] and a lateral chain-cell-type PCM [3] were previously developed. Relative bit cost of both 3-D flash memory and VCCPCM is shown in Fig. 1. By virtue of technologies (1) to (3), the relative bit cost of the VCCPCM compared to 3-D flash memory is reduced to 0.2. Table 1 compares characteristics of 3-D flash memory and VCCPCM. In the present study, set, reset, and reading operations of the VCCPCM were confirmed. Moreover, off-current variation of the poly-Si diode was suppressed by short-time annealing.2. Device structure and operation method The structure of the VCCPCM is shown in Fig. 2. The poly-Si selection diode and VCCPCM are connected serially and positioned at the cross points between the bit and word lines. The structure and equivalent circuit of a VCCPCM are shown in Fig. 3. The gate oxide, channel poly-silicon, and the phase-change material are formed on the side of the holes in the stacked gates. Each memory cell consists of a poly-silicon transistor and a phase-change layer connected in parallel. The memory cells are connected serially in the vertical direction. In the set/reset operations, an off-voltage is applied to the gate at the selected cell, and a positive on-voltage is applied to the unselect...
The temperature dependence of Pt L III -and I K-edge extended x-ray-absorption fine-structure spectra of octahedrally coordinated Pt X 6 2Ϫ (XϭCl, Br, and I͒ complexes has experimentally been investigated not only for the first-nearest-neighbor ͑NN͒ shells but for higher NN ones. The second-and third-order cumulants of a radial distribution function in the octahedral system have been evaluated quantum mechanically by employing the interatomic potential including the third-order force constants. The experimentally obtained second-order cumulants agree with the values expected by the vibrational data and the third-order cumulants have successfully given the anharmonic force constants. Contribution of the bending motions to the cumulants of higher NN shells is discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.