Sphingosine 1-phosphate (S1P), produced by sphingosine kinase (SPHK), acts both by intracellular and extracellular modes. We evaluated the role of SPHK1 and S1P in osteoclastogenesis using bone marrow-derived macrophage (BMM) single and BMM/osteoblast coculture systems. In BMM single cultures, the osteoclastogenic factor receptor activator of NF-kappaB ligand (RANKL) upregulated SPHK1 and increased S1P production and secretion. SPHK1 siRNA enhanced and SPHK1 overexpression attenuated osteoclastogenesis via modulation of p38 and ERK activities, and NFATc1 and c-Fos levels. Extracellular S1P had no effect in these cultures. These data suggest that intracellular S1P produced in response to RANKL forms a negative feedback loop in BMM single cultures. In contrast, S1P addition to BMM/osteoblast cocultures greatly increased osteoclastogenesis by increasing RANKL in osteoblasts via cyclooxygenase-2 and PGE(2) regulation. S1P also stimulated osteoblast migration and survival. The RANKL elevation and chemotactic effects were also observed with T cells. These results indicate that secreted S1P attracts and acts on osteoblasts and T cells to augment osteoclastogenesis. Taken together, S1P plays an important role in osteoclastogenesis regulation and in communication between osteoclasts and osteoblasts or T cells.
Three different approaches were used to investigate the role of extracellular phospholipases in the pathogenicity of Candida albicans. First, we compared 11 blood isolates of this yeast with an equal number of commensal strains isolated from the oral cavities of healthy volunteers. Blood isolates produced significantly more extracellular phospholipase activity than the commensal strains did. Second, two clinical isolates of C. albicans that differed in their levels of virulence in a newborn mouse model were compared for their ability to secrete phospholipases. The invasive strain produced significantly more extracellular phospholipase activity than the noninvasive strain did. Third, nine blood isolates were characterized for their phospholipase and proteinase production, germ tube formation, growth, and adherence to and damage of endothelial cells in vitro. These factors were analyzed subsequently to determine whether they predicted mortality in a mouse model of hematogenously disseminated candidiasis. By proportional hazard analysis, the relative risk of death was 5.6-fold higher (95% confidence interval, 1.672 to 18.84 [P < 0.005]) in the mice infected with the higherphospholipase-secreting strains than in the low-phospholipase secretors. None of the other putative virulence factors predicted mortality. Characterization of phospholipases secreted by three of the blood isolates showed that these strains secreted both phospholipase B and lysophospholipase-transacylase activities. These results implicate extracellular phospholipase as a virulence factor in the pathogenesis of hematogenous infections caused by C. albicans.
Human hepatocytes usually are resistant to TNF-α cytotoxicity. In mouse or rat hepatocytes, repression of NF-κB activation is sufficient to induce TNF-α-mediated apoptosis. However, in both Huh-7 human hepatoma cells and Hc human normal hepatocytes, when infected with an adenovirus expressing a mutated form of IκBα (Ad5IκB), which almost completely blocks NF-κB activation, >80% of the cells survived 24 h after TNF-α stimulation. Here, we report that TNF-α activates other antiapoptotic factors, such as sphingosine kinase (SphK), phosphatidylinositol 3-kinase (PI3K), and Akt kinase. Pretreatment of cells with N,N-dimethylsphingosine (DMS), an inhibitor of SphK, or LY 294002, an inhibitor of PI3K that acts upstream of Akt, increased the number of apoptotic cells induced by TNF-α in Ad5IκB-infected Huh-7 and Hc cells. TNF-α-induced activations of PI3K and Akt were inhibited by DMS. In contrast, exogenous sphingosine 1-phosphate, a product of SphK, was found to activate Akt and partially rescued the cells from TNF-α-induced apoptosis. Although Akt has been reported to activate NF-κB, DMS and LY 294002 failed to prevent TNF-α-induced NF-κB activation, suggesting that the antiapoptotic effects of SphK and Akt are independent of NF-κB. Furthermore, apoptosis mediated by Fas ligand (FasL) involving Akt activation also was potentiated by DMS pretreatment in Hc cells. Sphingosine 1-phosphate administration partially protected cells from FasL-mediated apoptosis. These results indicate that not only NF-κB but also SphK and PI3K/Akt are involved in the signaling pathway(s) for protection of human hepatocytes from the apoptotic action of TNF-α and probably FasL.
Ceramide (CER) with long-chain fatty acids (FAs) in the human stratum corneum (SC) is important for the skin barrier functions. Changes in the CER profile have been associated with abnormal permeability of dermatoses such as atopic dermatitis (AD) and psoriasis. In addition, interferon-γ (IFN-γ) has been known to be abundant in both AD and psoriatic skin lesions. In this study, we aimed to identify the mechanism underlying the alteration of FA chain length of CERs in these diseases. Mass spectrometry analysis of CERs in the SC showed that the proportion of CERs with long-chain FAs was significantly lower in AD and psoriasis patients than in healthy controls, and this reduction was more pronounced in psoriasis than in AD. Using cultured human keratinocytes and epidermal sheets, we found that only IFN-γ among various cytokines decreased the mRNA expression of elongase of long-chain fatty acids (ELOVL) and ceramide synthase (CerS), enzymes involved in FA chain elongation. Furthermore, quantitative analysis showed that IFN-γ decreased the levels of CERs with long-chain FAs. These results suggest that IFN-γ decreases CERs with long-chain FAs through the downregulation of ELOVL and CerS and that this mechanism may be involved in the CER profile alteration observed in psoriasis and AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.