Sequences of the folP1, rpoB, and gyrA genes were analyzed for 88 isolates of Mycobacterium leprae from leprosy patients in Japan, Haiti, Indonesia, Pakistan, and the Philippines. Thirteen isolates (14.8%) showed representative mutations in more than two genes, suggesting the emergence of multidrug-resistant M. leprae.
Emergence of drug resistant strains of Mycobacterium leprae was reported soon after the introduction of dapsone (diamino-diphenyl sulphone, DDS) for leprosy treatment (6, 10, 11). Three cases of multidrug-resistant strains of M. leprae have been reported recently (2, 8, 9, 13). In order to prevent multiple drug resistant strains of M. leprae from developing, current leprosy control strategies are based on early detection of cases and treatment with multidrug therapy (MDT) as recommended by the World Health Organization (WHO). We report here the identification of a multidrug-resistant strain of M. leprae from a patient who received inadequate therapy for leprosy. The drug resistant profile of the isolated strain was confirmed by the mouse footpad method and the identification of mutations in genes previously shown to be associated with resistance to each drug was made.
The nucleotide sequence analysis of the dihydropteroate synthase (DHPS) gene of six diaminodiphenylsulfone-resistant Mycobacterium leprae strains revealed that the mutation was limited at highly conserved amino acid residues 53 or 55. Though the mutation at amino acid residue 55 or its homologous site has been reported in other bacteria, the mutation at residue 53 is the first case in bacteria. This is the first paper which links the mutations in DHPS and sulfonamide resistance in M. leprae. This finding is medically and socially relevant, since leprosy is still a big problem in certain regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.