Background: Previously, we indicated that stromal genetic instability might contribute to tumorigenesis of both sporadic and ulcerative colitis associated colorectal adenocarcinomas. Considering the established adenoma-adenocarcinoma sequence, in this study we analysed genetic instability in colorectal adenoma cells and surrounding stroma. Methods: In 164 colorectal tumours (34 hyperplastic polyps, 38 tubular adenomas with low grade dysplasia (TA-L), 51 tubular adenomas with high grade dysplasia (TA-H), and 41 invasive carcinomas), epithelial and stromal genetic instability with National Cancer Institute standard microsatellite markers and chromosome 17 (Chr17) markers, were analysed by a combination of laser capture microdissection and GeneScan approaches. Results: While frequencies of both loss of heterozygosity (LOH) and microsatellite instability (MSI) were extremely low in hyperplastic polyps, LOH in tubular adenomas was detected in both epithelial (TA-L 13.2%, TA-H 27.5%) and stromal (5.3% and 5.9%, respectively) elements, along with MSI (5.3% and 13.7%, and 5.3 and 5.9%, respectively). Frequencies of epithelial alterations were higher in TA-H than in TA-L, and greatest in the carcinoma group. On the other hand, frequencies of stromal LOH or MSI were almost constant (5.3% , 17.1%, 5.3% , 17.1%, respectively) in adenomas and invasive carcinomas. In addition, p53 was found to be significantly overexpressed in a greater proportion of TA-L with LOH than in those without genetic instability. Conclusion:The results indicate the presence of genetic alterations in stroma from an early stage of carcinogenesis, accompanied by stepwise increasing genetic instability of epithelia with progression to cancer. Thus microenvironmental changes due to genetic alteration in Chr17 markers in stromal cells may play an important role in colon adenoma and adenocarcinoma development.
CD109 is a glycosylphosphatidylinositol-anchored cell surface protein that is frequently detected in squamous cell carcinomas. CD109 is a negative regulator of TGF-β1 signaling in human keratinocytes, and the N-terminal fragment of CD109 secreted from cells after cleavage by the furin protease is important for modulating TGF-β1 signaling. Previously, we found that CD109 is expressed in human glioblastoma cells; however, the role of CD109 in glioblastoma cells is not established. Here, we describe the effects of CD109 in human glioblastoma cell lines. Three glioblastoma cell lines, SK-MG-1, U251MG and MG178, were tested and CD109 overexpression attenuated TGF-β1 signaling and enhanced EGF signaling in SK-MG-1, but not in U251MG or MG178. The N-terminal CD109 fragment in SK-MG-1 was hyperglycosylated compared with that in MG178 or U251MG. The conditioned medium of CD109-overexpressing SK-MG-1, containing the secreted N-terminal CD109, had a negative effect on TGF-β1 signaling in wild-type SK-MG-1 and MG178, whereas it did not show any effect on EGF signaling. In addition, cell surface CD109 interacts with EGF receptor in SK-MG-1 overexpressing CD109, and exhibited enhanced cell migration and invasion. These findings suggest that CD109 attenuates TGF-β1 signaling and enhances EGF signaling in SK-MG-1 cells and that the membrane-anchored CD109 may play major roles in the EGF signaling pathway.
Differential microsatellite instability (MSI) in tumour epithelial and stromal compartments has not been well examined for colorectal cancers. Using laser-captured microdissection, separate specimens of these compartments of 40 sporadic colorectal cancers were sampled and MSI was tested with four markers. To examine the relation between the MSI phenotype in the stroma and other genetic events and histopathological features, p53 and K-ras gene mutations were analysed, and the expression of p53, hMLH1, and hMSH2 protein was determined by immunohistochemistry. Microsatellite instability positive results were obtained for both epithelium (34%) and stromal tissue (41%). While MSI in epithelium correlated with differentiation and Dukes' stage, that in stroma demonstrated an inverse relation, being particularly frequent in well-differentiated adenocarcinomas (54%) and Dukes' A lesions (55%). Further, a significant inverse correlation between p53 protein overexpression in the epithelium and MSI in the stroma was found (P ¼ 0.02475). The results suggest an alternative pathway of carcinogenesis involving stromal genetic instability in the development of colorectal cancers.
With ulcerative colitis (UC)-associated tumorigenesis, p53 gene alteration is considered to be a key event. To clarify whether the p53-checkpoint is operating in foci of inflammation and that its disruption is a feature of UC-associated neoplasms, the present immunohistochemical study was conducted. Since accumulation of butyric acid with active UC is associated with apoptosis, effects of in vitro exposure of newly established UC-cancer derived cell lines to organic acids were also assessed. The regulatory subunit of ribonucleotide reductase, p53R2, was found to be localized with p53 in situ, and levels of p53, phospho-p53, p53R2 and inducible nitric oxide synthase were significantly intercorrelated. However, p53R2 expression was clearly reduced with progression through UC-associated dysplasia to carcinoma, demonstrating an inverse relation with p53 overexpression. In vitro treatment with butyrate or propionic acid, but not succinic acid, elicited a positive response in the p53-p53R2 system. Moreover, p53-dependent DNA repair, investigated by radioactive nucleotide incorporation, was induced by butyric acid and inhibited by short-interfering p53 and p53R2 RNAs. Therefore, it was concluded that the p53-p53R2-dependent DNA repair system is constitutively stimulated by butyric acid, which accumulates in UC inflammatory lesions. Since failure of the p53-G 1 checkpoint may cause dysfunction of repair under the influence of butyrate, gene alterations may increase and spread through the genome, leading to tumorigenesis. ' 2005 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.