In an aqueous enzymatic saccharification using cellulase, the dissolution of crystalline cellulose is one of the rate-limiting steps. Insoluble cellulose powder was preliminarily heat-treated with ionic liquids (ILs), such as [Bmim][Cl] (1-butyl-3-methylimidazolium chloride) and [Amim][Cl] (1-allyl-3-methylimidazolium chloride), which enable the production of soluble cellulose. On the other hand, the presence of ILs leads to a denaturation of enzymes. Using cellulase from Trichoderma viride, the effects of [Bmim][Cl] and [Amim][Cl] in the enzymatic saccharification were compared. The production of glucose was optimized with 5 wt%-ILs, both for [Bmim][Cl] and for [Amim][Cl]. The significant inhibiting effects of ILs (IL concentration >10 wt%) could be due to the denaturation of cellulase, because the peak shifts of intrinsic tryptophan fluorescence were observed in the presence of 7.5 wt%-ILs. To analyze kinetic parameters, the Langmuir adsorption model and the Michaelis-Menten model were employed. The investigation suggests that [Amim][Cl] can provide soluble cellulose more efficiently, and can promote enzymatic saccharification in the IL concentration below 5 wt%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.