HIV-1 Nef and the unrelated murine leukemia virus glycoGag strongly enhance the infectivity of HIV-1 virions produced in certain cell types in a clathrin-dependent manner. Here we show that Nef and glycoGag prevent the incorporation of the multipass transmembrane proteins SERINC3 and SERINC5 into HIV-1 virions to an extent that correlates with infectivity enhancement. Silencing of SERINC3 together with SERINC5 precisely phenocopied the effects of Nef and glycoGag on HIV-1 infectivities. The infectivity of nef-deficient virions increased more than 100-fold when produced in double-knockout human CD4+ T cells that lack both SERINC3 and SERINC5, and re-expression experiments confirmed that the absence of SERINC3 and SERINC5 accounted for the infectivity enhancement. Furthermore, SERINC3 and SERINC5 together restricted HIV-1 replication, and this restriction was evaded by Nef. SERINC3 and SERINC5 are highly expressed in primary human HIV-1 target cells, and inhibiting their downregulation by Nef is a potential strategy to combat HIV/AIDS.
The vacuolar protein sorting machinery regulates multivesicular body biogenesis and is selectively recruited by enveloped viruses to support budding. Here we report the crystal structure of the human ESCRT-III protein CHMP3 at 2.8 A resolution. The core structure of CHMP3 folds into a flat helical arrangement that assembles into a lattice, mainly via two different dimerization modes, and unilaterally exposes a highly basic surface. The C terminus, the target for Vps4-induced ESCRT disassembly, extends from the opposite side of the membrane targeting region. Mutations within the basic and dimerization regions hinder bilayer interaction in vivo and reverse the dominant-negative effect of a truncated CHMP3 fusion protein on HIV-1 budding. Thus, the final steps in the budding process may include CHMP protein polymerization and lattice formation on membranes by employing different bilayer-recognizing surfaces, a function shared by all CHMP family members.
The endosomal sorting complex ESCRT-III, which is formed by the structurally related CHMP proteins, is engaged by HIV-1 to promote viral budding. Here we show that progressive truncations into the C-terminal acidic domains of CHMP proteins trigger an increasingly robust anti-HIV budding activity. Together with biochemical evidence for specific intramolecular interactions between the basic and acidic halves of CHMP3 and CHMP4B, these results suggest that the acidic domains are autoinhibitory. The acidic half of CHMP3 also interacts with the endosome-associated ubiquitin isopeptidase AMSH, and the coexpression of AMSH or its CHMP3-binding domain converts wild-type CHMP3 into a potent inhibitor of HIV-1 release. Point mutations in CHMP3 that prevent binding to AMSH abrogate this effect, suggesting that binding to AMSH relieves the autoinhibition of CHMP3. Collectively, our results indicate that CHMP proteins are regulated through an autoinhibitory switch mechanism that allows tight control of ESCRT-III assembly.AMSH ͉ endosomal sorting machinery ͉ viral budding
The release of human immunodeficiency virus type 1 (HIV-1) and of other retroviruses from certain cells requires the presence of distinct regions in Gag that have been termed late assembly (L) domains. HIV-1 harbors a PTAP-type L domain in the p6 region of Gag that engages an endosomal budding machinery through Tsg101. In addition, an auxiliary L domain near the C terminus of p6 binds to ALIX/AIP1, which functions in the same endosomal sorting pathway as Tsg101. In the present study, we show that the profound release defect of HIV-1 L domain mutants can be completely rescued by increasing the cellular expression levels of ALIX and that this rescue depends on an intact ALIX binding site in p6. Furthermore, the ability of ALIX to rescue viral budding in this system depended on two putative surface-exposed hydrophobic patches on its N-terminal Bro1 domain. One of these patches mediates the interaction between ALIX and the ESCRT-III component CHMP4B, and mutations which disrupt the interaction also abolish the activity of ALIX in viral budding. The ability of ALIX to rescue a PTAP mutant also depends on its C-terminal proline-rich domain (PRD), but not on the binding sites for Tsg101, endophilin, CIN85, or for the newly identified binding partner, CMS, within the PRD. Our data establish that ALIX can have a dramatic effect on HIV-1 release and suggest that the ability to use ALIX may allow HIV-1 to replicate in cells that express only low levels of Tsg101.
SUMMARY The restriction factor Bst2/tetherin contains two membrane anchors which are employed to retain some enveloped viruses including HIV-1 tethered to the plasma membrane in the absence of virus encoded antagonists. The 2.77 Å crystal structure of the extracellular core presented here reveals a parallel 90 Å long disulfide linked coiled-coil domain while the complete extracellular domain forms an extended 170 Å long rod-like structure based on small angle X-ray scattering data. Mutagenesis analyses indicate that both the coiled-coil and the N-terminal region are required for retention of HIV-1, suggesting that the elongated structure can function as a molecular ruler to bridge long distances. The structure reveals substantial irregularities and instabilities throughout the coiled-coil, which contribute to its low stability in the absence of disulfide bonds. We propose that the irregular coiled-coil provides conformational flexibility and ensures that Bst2/tetherin anchoring in the plasma and the newly formed virus membrane do not interfere with budding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.