Reactive astrocytes play a key role in the pathogenesis of various neurodegenerative diseases. Monoamine oxidase-B (MAO-B) is one of the promising targets for the imaging of astrogliosis in the human brain. A novel selective and reversible MAO-B tracer, (S)-(2-methylpyrid-5-yl)-6-[(3-[ 18 F]fluoro-2hydroxy)propoxy]quinoline, ( 18 F-SMBT-1), was successfully developed via lead optimization from firstgeneration tau positron-emission tomography (PET) tracer 18 F-THK-5351. Methods: SMBT-1 was radiolabeled with fluorine-18 using the corresponding precursor. The binding affinity of radiolabeled compounds to MAO-B was assessed using saturation and competitive binding assays. The binding selectivity of 18 F-SMBT-1 to MAO-B was evaluated by autoradiography of frozen human brain tissues. The pharmacokinetics (PK) and metabolism were assessed in normal mice after intravenous administration of 18 F-SMBT-1. A 14-day toxicity study following the intravenous administration of SMBT-1 was performed using rats and mice. Results: In vitro binding assays demonstrated a high binding affinity of SMBT-1 to MAO-B (K D = 3.7 nM). In contrast, it showed low binding affinity to MAO-A and protein aggregates such as amyloid-β and tau fibrils. Autoradiographic analysis showed higher amounts of 18 F-SMBT-1 binding in the Alzheimer's disease (AD) brain sections than in the control brain sections. 18 F-SMBT-1 binding was completely displaced with reversible MAO-B inhibitor lazabemide, demonstrating the high selectivity of 18 F-SMBT-1 for MAO-B. Furthermore, 18 F-SMBT-1 showed a high uptake by brain, rapid washout, and no 4 radiolabeled metabolites in the brain of normal mice. SMBT-1 showed no significant binding to various receptors, ion channels, and transporters, and no toxic effects related to its administration were observed in mice and rats. Conclusion: 18 F-SMBT-1 is a promising and selective MAO-B PET tracer candidate, which would be useful for quantitative monitoring of astrogliosis in the human brain.
We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the first-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic acid (TCA) fixation. Protease activity in the 2D-gel was visualized as transparent spots where gelatin substrate was digested after commassie brilliant blue (CBB) staining. Some of the transparent spots from the skin mucus extract of rainbow trout were determined to be a cysteine protease through use of E-64 or CA-074. In the reverse zymography technique, the gel was incubated with papain solution at 37 ºC for 18 h. Cysteine protease inhibitors from broad bean seeds were detected as clear blue spots after CBB staining. The amino (N-) terminal sequences of four papain inhibitor spots thus detected were demonstrated to be identical to that of favin β chain, a broad bean lectin. Taken together, our system can be considered to be an efficient technique for discovering and characterizing new proteases and protease inhibitors in biological samples. This is the first report describing a 2D-gel system of zymography and reverse zymography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.