SUMMARY When unfolded proteins accumulate to irremediably high levels within the endoplasmic reticulum (ER), intracellular signaling pathways called the unfolded protein response (UPR) become hyperactivated to cause programmed cell death. We discovered that thioredoxin-interacting protein (TXNIP) is a critical node in this “Terminal UPR.” TXNIP becomes rapidly induced by IRE1α, an ER bifunctional kinase/endoribonuclease (RNase). Hyperactivated IRE1α increases TXNIP mRNA stability by reducing levels of a TXNIP destabilizing micro-RNA, miR-17. In turn, elevated TXNIP protein activates the NLRP3 inflammasome, causing Caspase-1 cleavage and interleukin 1β (IL-1β) secretion. Txnip gene deletion reduces pancreatic β-cell death during ER stress, and suppresses diabetes caused by proinsulin misfolding in the Akita mouse. Finally, small molecule IRE1α RNase inhibitors suppress TXNIP production to block IL-1β secretion. In summary, the IRE1α-TXNIP pathway is used in the terminal UPR to promote sterile inflammation and programmed cell death, and may be targeted to develop effective treatments for cell degenerative diseases.
Akt kinase is activated by transforming growth factor-beta1 (TGF-β) in diabetic kidneys and plays important roles in fibrosis, hypertrophy and cell survival in glomerular mesangial cells (MC)1–11. However, the mechanisms of Akt activation by TGF-β are not fully understood. Here we show that TGF-β activates Akt in MC by inducing microRNA-216a (miR-216a) and miR-217, both of which target phosphatase and tensin homologue (PTEN). Both these miRs are located within the second intron of a non-coding RNA (RP23-298H6.1-001). The RP23 promoter was activated by TGF-β and also by miR-192 via E-box-regulated mechanisms as shown previously3. Akt activation by these miRs also led to MC survival and hypertrophy similar to TGF-β. These studies reveal a mechanism of Akt activation via PTEN downregulation by two miRs regulated by upstream miR-192 and TGF-β. Due to the diversity of PTEN function12, 13, this miR amplifying circuit may play key roles not only in kidney disorders, but also other diseases.
Insulin resistance is often associated with obesity and can precipitate type 2 diabetes. To date, most known approaches that improve insulin resistance must be preceded by the amelioration of obesity and hepatosteatosis. Here, we show that this provision is not mandatory; insulin resistance and hyperglycemia are improved by the modification of hepatic fatty acid composition, even in the presence of persistent obesity and hepatosteatosis. Mice deficient for Elovl6, the gene encoding the elongase that catalyzes the conversion of palmitate to stearate, were generated and shown to become obese and develop hepatosteatosis when fed a high-fat diet or mated to leptin-deficient ob/ob mice. However, they showed marked protection from hyperinsulinemia, hyperglycemia and hyperleptinemia. Amelioration of insulin resistance was associated with restoration of hepatic insulin receptor substrate-2 and suppression of hepatic protein kinase C epsilon activity resulting in restoration of Akt phosphorylation. Collectively, these data show that hepatic fatty acid composition is a new determinant for insulin sensitivity that acts independently of cellular energy balance and stress. Inhibition of this elongase could be a new therapeutic approach for ameliorating insulin resistance, diabetes and cardiovascular risks, even in the presence of a continuing state of obesity.
Insulin receptor substrate 2 (IRS-2) is the main mediator of insulin signalling in the liver, controlling insulin sensitivity. Sterol regulatory element binding proteins (SREBPs) have been established as transcriptional regulators of lipid synthesis. Here, we show that SREBPs directly repress transcription of IRS-2 and inhibit hepatic insulin signalling. The IRS-2 promoter is activated by forkhead proteins through an insulin response element (IRE). Nuclear SREBPs effectively replace and interfere in the binding of these transactivators, resulting in inhibition of the downstream PI(3)K/Akt pathway, followed by decreased glycogen synthesis. These data suggest a molecular mechanism for the physiological switching from glycogen synthesis to lipogenesis and hepatic insulin resistance that is associated with hepatosteatosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.