Small gold clusters (<1 nm) protected by a glutathione (GSH) monolayer were fractionated into six components by polyacrylamide gel electrophoresis, and their chemical compositions were investigated by electrospray ionization mass spectroscopy. The results demonstrate isolation of a series of magic-numbered gold clusters, Au18(SG)11, Au21(SG)12, Au25+/-1(SG)14+/-1, Au28(SG)16, Au32(SG)18, and Au39(SG)23. Their optical absorption spectra are highly structured with clear absorption onsets, which shift toward higher energies with reduction of the core size. These molecular-like gold clusters exhibit visible photoluminescence. The results reported herein provide helpful guidelines or starting points for further experimental and theoretical studies on structures, stabilities, and optical properties of monolayer-protected gold clusters.
Small gold clusters (<1 nm), protected by monolayers of glutathione, N-(2-mercaptopropionyl)glycine, or mercaptosuccinic acid, were prepared by reducing the corresponding Au(I)-thiolate polymers and were fractionated by size using polyacrylamide gel electrophoresis (PAGE). Mass analysis of the fractionated clusters revealed that their core sizes varied with the molecular structures of the thiolates. This finding indicates that the reduction of the Au(I)-thiolate polymers yields small clusters whose growth is kinetically hindered by passivation with thiolates. Optical spectra of the clusters with identical compositions exhibited different profiles depending on the thiolate molecular structures. This observation implies that deformation of the underlying gold cores is induced by interligand interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.