Although calcium carbonate is known to be a common biomineral in plants, very little attention has been given to the biological control of calcium carbonate deposition. In mulberry leaves, a subcellular structure is involved in mineral deposition and is described here by a variety of cytological techniques. Calcium carbonate was deposited in large, rounded idioblast cells located in the upper epidermal layer of mulberry leaves. Next to the outmost region ("cap") of young idioblasts, we found that the inner cell wall layer expanded to form a peculiar outgrowth, named cell wall sac in this report. This sac grew and eventually occupied the entire apoplastic space of the idioblast. Inside the mature cell wall sac, various cellulosic membranes developed and became the major site of Ca carbonate deposition. Concentrated Ca2+ was pooled in the peripheral zone, where small Ca carbonate globules were present in large numbers. Large globules were tightly packed among multiple membranes in the central zone, especially in compartments formed by cellulosic membranes and in their neighboring membranes. The maximum Ca sink capacity of a single cell wall sac was quantified using enzymatically isolated idioblasts as approximately 48 ng. The newly formed outgrowth in idioblasts is not a pure calcareous body but a complex cell wall structure filled with substantial amounts of Ca carbonate crystals.
The distribution and ultrastructural features of idioblasts containing calcium oxalate crystals were studied in leaf tissues of mulberry, Morus alba L. In addition to the calcium carbonate crystals formed in epidermal idioblasts, large calcium oxalate crystals were deposited in cells adjacent to the veins and surrounded by a cell wall sheath which had immunoreactivity with an antibody recognizing a xyloglucan epitope. The wall sheath formation indicates exclusion of the mature crystal from the protoplast.
A peculiar inward growth, named a "cell wall sac", formed in mulberry (Morus alba) idioblasts, is a subcellular site for production of calcium carbonate crystals. On the basis of ultrastructural observations, a fully expanded cell wall sac could be divided into two parts-an amorphous complex consisting of multi-layered compartments with multiple fibers originating from the innermost cell wall layer, and a peripheral plain matrix with fiber aggregates. Immunofluorescent localization showed that low and highly esterified pectin epitopes were detected at the early stages of development of the cell wall sac, followed by complete disappearance from the both parts of fully enlarged mature sac. In contrast, the xyloglucan epitope remained in the compartment complex; this was supported by the observation that the xyloglucan epitope labeled with immuno-gold particles is found on fibers in the complex part.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.