Critical biological electron-transfer processes involving high-valent oxometal chemistry occur widely, for example in haem proteins [oxoiron(IV); Fe(IV)(O)] and in photosystem II. Photosystem II involves Ca(2+) as well as high-valent oxomanganese cluster species. However, there is no example of an interaction between metal ions and oxoiron(IV) complexes. Here, we report new findings concerning the binding of the redox-inactive metal ions Ca(2+) and Sc(3+) to a non-haem oxoiron(IV) complex, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). As determined by X-ray diffraction analysis, an oxo-Sc(3+) interaction leads to a structural distortion of the oxoiron(IV) moiety. More importantly, this interaction facilitates a two-electron reduction by ferrocene, whereas only a one-electron reduction process occurs without the metal ions. This control of redox behaviour provides valuable mechanistic insights into oxometal redox chemistry, and suggests a possible key role that an auxiliary Lewis acid metal ion could play in nature, as in photosystem II.
Oxidative C-H bond cleavage of toluene derivatives and sulfoxidation of thioanisole derivatives by a nonheme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), were remarkably enhanced by the presence of triflic acid (HOTf) and Sc(OTf)3 in acetonitrile at 298 K. All the logarithms of the observed second-order rate constants of both the oxidative C-H bond cleavage and sulfoxidation reactions exhibit remarkably unified correlations with the driving forces of proton-coupled electron transfer (PCET) and metal ion-coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes between PCET and MCET were taken into account, respectively. Thus, the mechanisms of both the oxidative C-H bond cleavage of toluene derivatives and sulfoxidation of thioanisole derivatives by [(N4Py)Fe(IV)(O)](2+) in the presence of HOTf and Sc(OTf)3 have been unified as the rate-determining electron transfer, which is coupled with binding of [(N4Py)Fe(IV)(O)](2+) by proton (PCET) and Sc(OTf)3 (MCET). There was no deuterium kinetic isotope effect (KIE) on the oxidative C-H bond cleavage of toluene via the PCET pathway, whereas a large KIE value was observed with Sc(OTf)3, which exhibited no acceleration of the oxidative C-H bond cleavage of toluene. When HOTf was replaced by DOTf, an inverse KIE (0.4) was observed for PCET from both toluene and [Ru(II)(bpy)3](2+) (bpy =2,2'-bipyridine) to [(N4Py)Fe(IV)(O)](2+). The PCET and MCET reactivities of [(N4Py)Fe(IV)(O)](2+) with Brønsted acids and various metal triflates have also been unified as a single correlation with a quantitative measure of the Lewis acidity.
Rates of electron transfer from a series of one-electron reductants to a nonheme oxoiron(IV) complex, [(N4Py)Fe(IV)(O)](2+), are enhanced as much as 10(8)-fold by addition of metal ions such as Sc(3+), Zn(2+), Mg(2+), and Ca(2+); the metal ion effect follows the Lewis acidity of metal ions. The one-electron reduction potential of [(N4Py)Fe(IV)(O)](2+) is shifted to a positive direction by 0.84 V in the presence of Sc(3+) ion (0.20 M).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.