This study revealed that the ABC phenomenon is induced by PEG-modified PLA-nanoparticles. We consider that NP-L33s may be useful clinically for the sustained-release and targeted delivery of PGE(1).
Human immunodeficiency virus type 1 (HIV-1) Gag protein is the principal structural component of the HIV particle. Localization of the Pr55(Gag) protein to the plasma membrane initiates virus assembly. Recent studies indicated that d-myo-phosphatidylinositol (PI) 4,5-bisphosphate (PI(4,5)P2) regulates Pr55(Gag) localization and assembly. We determined the binding affinity between Pr55(Gag) or its N-terminal MA domain and various phosphoinositide derivatives using a highly sensitive surface plasmon resonance (SPR) sensor and biotinylated inositol phosphate. The equilibrium dissociation constants obtained using this approach reflected the distinct magnitude of acyl group-based and phosphate group-based interactions. The dissociation constant (K(D)) for Pr55(Gag) complexed with 1,4,5-IP3 (an inositol with divalent phosphate groups and devoid of lipid groups) was 2170 microM, while the K(D) for di-C(8)-PI (a lipid-containing inositol devoid of divalent phosphate groups) was 186 microM, and the K(D) for di-C(8)-PI(4,5)P2 (an inositol with both lipid and divalent phosphate groups) was 47.4 microM. The same trend in affinity was observed when these phosphoinositides were complexed with MA. Our results suggest that the contribution of hydrophobic acyl chains is greater than negatively charged inositol phosphates in Pr55(Gag)/MA binding. Furthermore, each inositol phosphate (devoid of lipid groups) tested showed a distinct Pr55(Gag)-binding affinity depending on the position and number of phosphate groups. However, the position and number of phosphate groups had no effect on MA-binding affinity.
p97/VCP is an endoplasmic reticulum (ER)‐associated protein that belongs to the AAA (ATPases associated with diverse cellular activities) ATPase family. It has a variety of cellular functions including ER‐associated protein degradation, autophagy, and aggresome formation. Recent studies have shown emerging roles of p97/VCP and its potential as a therapeutic target in several cancer subtypes including multiple myeloma (MM). We conducted a cell‐based compound screen to exploit novel small compounds that have cytotoxic activity in myeloma cells. Among approximately 2000 compounds, OSSL_325096 showed relatively strong antiproliferative activity in MM cell lines (IC50, 100‐500 nmol/L). OSSL_325096 induced apoptosis in myeloma cell lines, including a bortezomib‐resistant cell line and primary myeloma cells purified from patients. Accumulation of poly‐ubiquitinated proteins, PERK, CHOP, and IREα, was observed in MM cell lines treated with OSSL_325096, suggesting that it induces ER stress in MM cells. OSSL_325096 has a similar chemical structure to DBeQ, a known p97/VCP inhibitor. Knockdown of the gene encoding p97/VCP induced apoptosis in myeloma cells, accompanied by accumulation of poly‐ubiquitinated protein. IC50 of OSSL_325096 to myeloma cell lines were found to be lower (0.1‐0.8 μmol/L) than those of DBeQ (2‐5 μmol/L). In silico protein–drug‐binding simulation suggested possible binding of OSSL_325096 to the ATP binding site in the D2 domain of p97/VCP. In cell‐free ATPase assays, OSSL_325096 showed dose‐dependent inhibition of p97/VCP ATPase activity. Finally, OSSL_325096 inhibited the growth of subcutaneous myeloma cell tumors in vivo. The present data suggest that OSSL_325096 exerts anti‐myeloma activity, at least in part through p97/VCP inhibition.
We previously proposed that membrane permeabilization activity of NSAIDs is involved in NSAID-induced gastric lesions. We here synthesized derivatives of loxoprofen that have lower membrane permeabilization activity than other NSAIDs. Compared to loxoprofen, the derivatives 10a and 10b have lower membrane permeabilization activity and their oral administration produced fewer gastric lesions but showed an equivalent anti-inflammatory effect. These results suggest that 10a and 10b are likely to be therapeutically beneficial as safer NSAIDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.