This study demonstrates that ATO is metabolized when administered intravenously to APL patients and methylated metabolites are promptly eliminated from the blood and excreted into urine after completion of administration, indicating no measurable accumulation of ATO in the blood.
The determination of rare earth elements (REEs) in airborne particulate matter (APM) was conducted, and the distribution pattern of atmospheric REEs was evaluated in this study. The APM was collected in the center of Tokyo, Japan, where serious air pollution is always of concern. A cellulose acetate membrane filter was used to collect the APM because Ba and REEs contamination is lower than that in a quartz glass fiber filter. The REEs measurement was conducted by ICP-MS after the digestion of the APM by a microwave acid digestion procedure. The standard reference material (SRM) of NIST 1648 urban particulate matter was used to validate the accuracy of the analytical method. The analytical results for SRM well agreed with those of the reference and reported values. Consequently, the analytical method established in this study was applied to the determination of REEs in APM collected in Tokyo, Japan. The obtained REEs distribution pattern in the APM showed a positive anomaly of Tb and Eu. The La/Sm ratio, which is considered to be as a good indicator of the anthropogenic effect, in size-classified APM showed a high degree of the anthropogenic effect in fine APM with a diameter of <1.1 μm. Emission sources of Tb, Eu and other REEs are discussed.
Experimental
ChemicalsThe Se-enriched selenite was injected intravenously into mice fed Seadequate and -deficient diets. We studied the time-dependent changes in the distribution of the labeled Se in organs, red blood cells, and plasma. The total Se was determined by flow-injection ICPMS, and Se speciation analysis was conducted by micro-affinity chromatography coupled with low-flow ICPMS. Total Se in almost all organs, including liver, showed the maximum at 1 h after injection. From speciation analysis, exogenous 82 Se as Se-containing proteins other than selenoprotein P (Sel-P) (selenium containing albumin (SeAlb) and extra cellular glutathione peroxidase (eGPx)), peaked at 1 h and quickly decreased from 1 to 6 h after injection, whereas that as Sel-P, peaked at 6 h, and gradually decreased from 6 to 72 h after injection. We found that there were two pathways for the transfer of Se in mice; one was as SeAlb until 1 h after injection, and the other was as Sel-P from 6 to 72 h after injection.
The selenoprotein, cellular glutathione peroxidase (cGPx), has an important role in protecting organisms from oxidative damage through reducing levels of harmful peroxides. The liver and kidney in particular, have important roles in selenium (Se) metabolism and Se is excreted predominantly in urine and feces. In order to characterize the dynamics of these pathways we have measured the time-dependent changes in the quantities of hepatic, renal, urinary, and fecal Se species in mice fed Se-adequate and Se-deficient diets after injection of (82)Se-enriched selenite. Exogenous (82)Se was transformed to cGPx in both the liver and kidney within 1 h after injection and the synthesis of cGPx decreased 1 to 6 h and continued at a constant level from 6 to 72 h after injection. The total amount of Se associated with cGPx in mice fed Se-deficient diets was found to be less than in mice fed Se-adequate diets. This finding indicated that cGPx synthesis was suppressed under Se-deficient conditions and did not recover with selenite injection. Excess Se was associated with selenosugar in liver and transported to the kidney within 1 h after injection, and then excreted in urine and feces within 6 h after injection. Any excess amount of Se was excreted mainly as a selenosugar in urine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.