Abstract-In this study, we experimentally investigated the effect of robot fingertip stiffness on friction during grasping of an object. To make robots more human-friendly, robotic hands with soft surfaces have been developed. A soft fingertip, i.e., one with low stiffness, is considered desirable because it produces high friction. However, in our experiments, we were able to obtain high friction from a stiff fingertip under a certain condition. We initially investigated the maximum resistible force when solid objects with different angled surfaces were grasped by spherical fingertips of different stiffness. When the contact surface was flat, a stiffer fingertip produced larger frictional force. When the contact surface was highly convex, the maximum frictional force increased with decreasing fingertip stiffness. Secondly, we examined the relationships among the contact area, the load, and the maximum frictional force. We reformulated the relationship between the load and the maximum frictional force and, together with our experimental results, used it to determine the factor that increased the maximum frictional force.
An endoscope/fiberscope is a minimally invasive tool used for directly observing tissues in areas deep inside the human body where access is limited. However, this tool only yields visual information. If force feedback information were also available, endoscope/fiberscope operators would be able to detect indurated areas that are visually hard to recognize. Furthermore, obtaining such feedback information from tissues in areas where collecting visual information is a challenge would be highly useful. The major obstacle is that such force information is difficult to acquire. This paper presents a novel force sensing system that can be attached to a very thin fiberscope/endoscope. To ensure a small size, high resolution, easy sterilization, and low cost, the proposed force visualization–based system uses a highly elastic material—panty stocking fabric. The paper also presents the methodology for deriving the force value from the captured image. The system has a resolution of less than 0.01 N and sensitivity of greater than 600 pixels/N within the force range of 0–0.2 N.
A force feedback manipulator system was developed for use in neurosurgery. The system consists of a multidegree of freedom manipulator with a forcedetecting gripper and a device capable of using force feedback to display kinesthetic sense. The structure, which consists of parallel thin plates in the gripper of the manipulator, enables the detection of a gripping force and a pulling force, which can be used to grip and pull tumors. In this paper, we describe ways of improving the structure of the force sensor. Throughbilateral control, the operation device is able to display the gripping force as its driving force, and the pulling force as the frictional force between the display device and the skin of the finger. We also conducted experiments to test the force sense display capabilities of the developed system. The results showed that the system can display a force and the difference between the softness of different objects that are gripped. The ability of the system to identify different objects is increased by magnifying the detected force using an appropriate scale.
Abstract-In this study, we experimentally investigated the process leading to fracture in tofu grasping by deformable fingertips filled with a fluid. In our previous papers [1, 2], we developed deformable fingertips using a rubber bag filled with a viscoelastic fluid, and presented a strategy for delicate tofu grasping without any advance knowledge about fracture. However, the predication point was close to fracture, and the prediction was then still a gamble. In order to realize fracture prediction at an earlier stage, we examined the process leading to fracture when pushing tofu by the deformable fingertips. The stiffness of the fingertips can be controlled with the pressure of the fluid inside the fingertips. The pushing force and fluid pressure were examined for different levels of stiffness of the fingertips. The main findings and contributions are as follows. 1) The convergence of the ratio of the contact force to fluid pressure gives an indication of dent occurrence. This convergence could be seen when fingertip rubber bag was not filled (low stiffness). 2) It was easier for a dent to occur when the fingertip rubber bag was not filled than when it was filled (high stiffness). 3) Changes in the rate of increase of the fluid pressure as the tofu was pushed were repeatedly observed. We defined this as a phase change and present a method for detecting such changes. The phase change points were detected by comparing the fitting accuracies of different approximation models. 4) The last and second to the last phase changes before fracture were detected by detecting the first phase change (after the convergence of the rate of the contact force to fluid pressure if the fingertip bag was not completely filled). The detected points can be regarded as alert points indicating a fracture risk that is not close to the fracture point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.