In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Heat shock transcription factors (HSFs) mediate the inducible transcriptional response of genes that encode heat shock proteins and molecular chaperones. In vertebrates, three related HSF genes (HSF1 to -3) and the respective gene products (HSFs) have been characterized. We report the cloning and characterization of human HSF4 (hHSF4), a novel member of the hHSF family that shares properties with other members of the HSF family yet appears to be functionally distinct. hHSF4 lacks the carboxyl-terminal hydrophobic repeat which is shared among all vertebrate HSFs and has been suggested to be involved in the negative regulation of DNA binding activity. hHSF4 is preferentially expressed in the human heart, brain, skeletal muscle, and pancreas. Transient transfection of hHSF4 in HeLa cells, which do not express hHSF4, results in a constitutively active DNA binding trimer which, unlike other members of the HSF family, lacks the properties of a transcriptional activator. Constitutive overexpression of hHSF4 in HeLa cells results in reduced expression of the endogenous hsp70, hsp90, and hsp27 genes. hHSF4 represents a novel hHSF that exhibits tissue-specific expression and functions to repress the expression of genes encoding heat shock proteins and molecular chaperones.
Sterol regulatory element binding proteins (SREBPs) are transcription factors that activate transcription of the genes involved in cholesterol and fatty acid biosynthesis. In the present study, we show that a small synthetic molecule we previously discovered to block adipogenesis is an inhibitor of the SREBP activation. The diarylthiazole derivative, now called fatostatin, impairs the activation process of SREBPs, thereby decreasing the transcription of lipogenic genes in cells. Our analysis suggests that fatostatin inhibits the ER-Golgi translocation of SREBPs through binding to their escort protein, the SREBP cleavage-activating protein (SCAP), at a distinct site from the sterol-binding domain. Fatostatin blocked increases in body weight, blood glucose, and hepatic fat accumulation in obese ob/ob mice, even under uncontrolled food intake. Fatostatin may serve as a tool for gaining further insights into the regulation of SREBP.
Avian cells express three heat shock transcription factor (HSF) genes corresponding to a novel factor, HSF3, and homologs of mouse and human HSF1 and HSF2. Analysis of the biochemical and cell biological properties of these HSFs reveals that HSF3 has properties in common with both HSF1 and HSF2 and yet has features which are distinct from both. HSF3 is constitutively expressed in the erythroblast cell line HD6, the lymphoblast cell line MSB, and embryo fibroblasts, and yet its DNA-binding activity is induced only upon exposure of HD6 cells to heat shock. Acquisition of HSF3 DNA-binding activity in HD6 cells is accompanied by oligomerization from a non-DNA-binding dimer to a DNA-binding trimer, whereas the effect of heat shock on HSF1 is oligomerization of an inert monomer to a DNA-binding trimer. Induction of HSF3 DNA-binding activity is delayed compared with that of HSF1. As occurs for HSF1, heat shock leads to the translocation of HSF3 to the nucleus. HSF3 exhibits the properties of a transcriptional activator, as judged from the stimulatory activity of transiently overexpressed HSF3 measured by using a heat shock element-containing reporter construct and as independently assayed by the activity of a chimeric GAL4-HSF3 protein on a GAL4 reporter construct. These results reveal that HSF3 is negatively regulated in avian cells and acquires DNA-binding activity in certain cells upon heat shock.Heat shock genes are transcriptionally induced upon exposure of cells to physiological conditions, including stresses such as heat shock, heavy metals, oxidative stress, and amino acid analogs, and during nonstressful conditions such as cell growth, differentiation, and viral infections (27). The effects of heat shock and other stresses on heat shock gene transcription are mediated through interactions of the heat shock element (HSE) that is composed of at least three pentanucleotide modules (nGAAn) arranged as contiguous inverted repeats (33) with heat shock factor (HSF), the inducible transcriptional activator that regulates the transcription of these stress-inducible genes (25). In the budding yeasts Saccharomyces cerevisiae and Kluyveromyces lactis, HSF binds to HSE constitutively as a trimer and stimulates transcription upon heat shock (22,49,50). During deactivation of the heat shock response, the Cterminal activator domain is unmasked and becomes phosphorylated (9, 21, 32). In contrast, HSF does not bind to the HSE under normal growth conditions in the fission yeast Schizosaccharomyces pombe, Drosophila melanogaster, and higher eukaryotes but acquires HSE-binding activity by oligomerization to a trimer upon exposure to stress conditions (17,29,50,57,58,61,62). HSF trimers exhibit cooperative interactions between adjacent and distantly spaced HSEs as measured by DNA binding studies and transcriptional activation (3, 63).Recently, HSF genes from a number of eukaryotes have been cloned, thus allowing a comparative analysis to identify regulatory domains. The HSF family includes HSF1, HSF2, and HSF3 in higher eukaryotes ...
Suppressor of cytokine signaling-1 (SOCS-1), also known as STAT-induced STAT inhibitor-1 (SSI-1), is a negative feedback molecule for cytokine signaling, and its in vivo deletion induces fulminant hepatitis. However, elimination of the STAT1 or STAT6 gene or deletion of NKT cells substantially prevented severe hepatitis in SOCS-1-deficient mice, while administration of IFN-gamma and IL-4 accelerated its development. SOCS-1 deficiency not only sustained IFN-gamma/IL-4 signaling but also eliminated the cross-inhibitory action of IFN-gamma on IL-4 signaling. These results suggest that SOCS-1 deficiency-induced persistent activation of STAT1 and STAT6, which would be inhibited by SOCS-1 under normal conditions, may induce abnormal activation of NKT cells, thus leading to lethal pathological changes in SOCS-1-deficient mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.