Mitochondrial DNA sequences are often used to construct molecular phylogenetic trees among closely related animals. In order to examine the usefulness of mtDNA sequences for deep-branch phylogenetics, genes in previously reported mtDNA sequences were analyzed among several animals that diverged 20-600 million years ago. Unambiguous alignment was achieved for stem-forming regions of mitochondrial tRNA genes by virtue of their conservative secondary structures. Sequences derived from stem parts of the mitochondrial tRNA genes appeared to accumulate much variation linearly for a long period of time: nearly 100 Myr for transition differences and more than 350 Myr for transversion differences. This characteristic could be attributed, in part, to the structural variability of mitochondrial tRNAs, which have fewer restrictions on their tertiary structure than do nonmitochondrial tRNAs. The tRNA sequence data served to reconstruct a well-established phylogeny of the animals with 100% bootstrap probabilities by both maximum parsimony and neighbor-joining methods. By contrast, mitochondrial protein genes coding for cytochrome b and cytochrome oxidase subunit I did not reconstruct the established phylogeny or did so only weakly, although a variety of fractions of the protein gene sequences were subjected to tree-building. This discouraging phylogenetic performance of mitochondrial protein genes, especially with respect to branches originating over 300 Myr ago, was not simply due to high randomness in the data. It may have been due to the relative susceptibility of the protein genes to natural selection as compared with the stem parts of mitochondrial tRNA genes. On the basis of these results, it is proposed that mitochondrial tRNA genes may be useful in resolving deep branches in animal phylogenies with divergences that occurred some hundreds of Myr ago. For this purpose, we designed a set of primers with which mtDNA fragments encompassing clustered tRNA genes were successfully amplified from various vertebrates by the polymerase chain reaction.
Mitochondrial DNA (mtDNA) regions corresponding to two major tRNA gene clusters were amplified and sequenced for the Japanese pit viper, himehabu. In one of these clusters, which in most vertebrates characterized to date contains three tightly connected genes for tRNA(Ile), and tRNA(Gln), and tRNA(Met), a sequence of approximately 1.3 kb was found to be inserted between the genes for tRNA(Ile) and tRNA(Gln). The insert consists of a control-region-like sequence possessing some conserved sequence blocks, and short flanking sequences which may be folded into tRNA(Pro), tRNA(Phe), and tRNA(Leu) genes. Several other snakes belonging to different families were also found to possess a control-region-like sequence and tRNA(Leu) gene between the tRNA(Ile)and tRNA(Gln) genes. We also sequenced a region surrounded by genes for cytochrome b and 12S rRNA, where the control region and genes for tRNA(Pro) and tRNA(Phe) are normally located in the mtDNAs of most vertebrates. In this region of three examined snakes, a control-region-like sequence exists that is almost completely identical to the one found between the tRNA(Ile) and tRNA(Gln) genes. The mtDNAs of these snakes thus possess two nearly identical control-region-like sequences which are otherwise divergent to a large extent between the species. These results suggest that the duplicate state of the control-region-like sequences has long persisted in snake mtDNAs, possibly since the original insertion of the control-region-like sequence and tRNA(Leu) gene into the tRNA gene cluster, which occurred in the early stage of the divergence of snakes. It is also suggested that the duplicated control-region-like sequences at two distant locations of mtDNA have evolved concertedly by a mechanism such as frequent gene conversion. The secondary structures of the determined tRNA genes point to the operation of simplification pressure on the T psi C arm of snake mitochondrial tRNAs.
BackgroundRecent advances in DNA sequencing and computation offer the opportunity for reliable estimates of divergence times between organisms based on molecular data. Bayesian estimations of divergence times that do not assume the molecular clock use time constraints at multiple nodes, usually based on the fossil records, as major boundary conditions. However, the fossil records of bony fishes may not adequately provide effective time constraints at multiple nodes. We explored an alternative source of time constraints in teleostean phylogeny by evaluating a biogeographic hypothesis concerning freshwater fishes from the family Cichlidae (Perciformes: Labroidei).ResultsWe added new mitogenomic sequence data from six cichlid species and conducted phylogenetic analyses using a large mitogenomic data set. We found a reciprocal monophyly of African and Neotropical cichlids and their sister group relationship to some Malagasy taxa (Ptychochrominae sensu Sparks and Smith). All of these taxa clustered with a Malagasy + Indo/Sri Lankan clade (Etroplinae sensu Sparks and Smith). The results of the phylogenetic analyses and divergence time estimations between continental cichlid clades were much more congruent with Gondwanaland origin and Cretaceous vicariant divergences than with Cenozoic transmarine dispersal between major continents.ConclusionWe propose to add the biogeographic assumption of cichlid divergences by continental fragmentation as effective time constraints in dating teleostean divergence times. We conducted divergence time estimations among teleosts by incorporating these additional time constraints and achieved a considerable reduction in credibility intervals in the estimated divergence times.
Turtles have highly specialized morphological characteristics, and their phylogenetic position has been under intensive debate. Previous molecular studies have not established a consistent and statistically well supported conclusion on this issue. In order to address this, complete mitochondrial DNA sequences were determined for the green turtle and the blue-tailed mole skink. These genomes possess an organization of genes which is typical of most other vertebrates, such as placental mammals, a frog, and bony fishes, but distinct from organizations of alligators and snakes. Molecular evolutionary rates of mitochondrial protein sequences appear to vary considerably among major reptilian lineages, with relatively rapid rates for snake and crocodilian lineages but slow rates for turtle and lizard lineages. In spite of this rate heterogeneity, phylogenetic analyses using amino acid sequences of 12 mitochondrial proteins reliably established the Archosauria (birds and crocodilians) and Lepidosauria (lizards and snakes) clades postulated from previous morphological studies. The phylogenetic analyses further suggested that turtles are a sister group of the archosaurs, and this untraditional relationship was provided with strong statistical evidence by both the bootstrap and the Kishino-Hasegawa tests. This is the first statistically significant molecular phylogeny on the placement of turtles relative to the archosaurs and lepidosaurs. It is therefore likely that turtles originated from a Permian-Triassic archosauromorph ancestor with two pairs of temporal fenestrae behind the skull orbit that were subsequently lost. The traditional classification of turtles in the Anapsida may thus need to be reconsidered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.