Type 2 diabetes mellitus (DM) is characterized by insulin resistance and pancreatic  cell dysfunction. In high-risk subjects, the earliest detectable abnormality is insulin resistance in skeletal muscle. Impaired insulin-mediated signaling, gene expression, glycogen synthesis, and accumulation of intramyocellular triglycerides have all been linked with insulin resistance, but no specific defect responsible for insulin resistance and DM has been identified in humans. To identify genes potentially important in the pathogenesis of DM, we analyzed gene expression in skeletal muscle from healthy metabolically characterized nondiabetic (family history negative and positive for DM) and diabetic Mexican-American subjects. We demonstrate that insulin resistance and DM associate with reduced expression of multiple nuclear respiratory factor-1 (NRF-1)-dependent genes encoding key enzymes in oxidative metabolism and mitochondrial function. Although NRF-1 expression is decreased only in diabetic subjects, expression of both PPAR␥ coactivator 1-␣ and- (PGC1-␣͞PPARGC1 and PGC1-͞PERC), coactivators of NRF-1 and PPAR␥-dependent transcription, is decreased in both diabetic subjects and family history-positive nondiabetic subjects. Decreased PGC1 expression may be responsible for decreased expression of NRF-dependent genes, leading to the metabolic disturbances characteristic of insulin resistance and DM.I nsulin resistance precedes and predicts the development of type 2 diabetes mellitus (DM) (1, 2). Defects in insulin signal transduction, gene expression, and muscle glycogen synthesis, and accumulation of intramyocellular triglycerides have all been identified as potential mediators of insulin resistance in high-risk individuals (1, 3-7). However, the molecular pathogenesis of DM remains unknown. Mouse data highlight the importance of glucose uptake into muscle but suggest a role for novel mechanisms, distinct from insulin signaling pathways (8). The importance of genetic risk factors is exemplified by the high concordance of DM in identical twins, the strong influence of family history and ethnicity on risk, and the identification of DNA sequence alterations in both rare and common forms of DM (9). Environmental factors, including obesity, inactivity, and aging, also play critical roles in DM risk. Because both genotype and environment converge to influence cellular function via gene and protein expression, we hypothesize that alterations in expression define a phenotype that parallels the metabolic evolution of DM and provides potential clues to pathogenesis. We used high-density oligonucleotide arrays to identify genes differentially expressed in skeletal muscle from nondiabetic and type 2 diabetic subjects. Because hyperglycemia per se can modulate expression, we also evaluated gene expression in insulin-resistant subjects at high risk for DM (''prediabetes'') on the basis of family history of DM and Mexican-American ethnicity (10). We demonstrate that prediabetic and diabetic muscle is characterized by decreased expressi...
The nature of the progressive beta-cell failure occurring as normal glucose tolerant (NGT) individuals progress to type 2 diabetes (T2DM) is incompletely understood. We measured insulin sensitivity (by a euglycemic insulin clamp) and insulin secretion rate (by deconvolution of plasma C-peptide levels during an oral glucose tolerance test) in 188 subjects [19 lean NGT (body mass index [BMI] = 25 kg/m(2)), 42 obese NGT, 22 BMI-matched impaired glucose tolerance [IGT], and 105 BMI-matched T2DM]. Main determinants of beta-cell function on the oral glucose tolerance test were derived from a mathematical model featuring the following: 1) glucose concentration-insulin secretion dose response (glucose sensitivity), 2) a secretion component proportional to the derivative of plasma glucose concentration (rate sensitivity); and 3) a potentiation factor. When NGT and T2DM were subgrouped by 2-h plasma glucose concentrations, insulin secretion rate revealed an inverted U-shaped pattern, rising through NGT up to IGT and falling off thereafter. In contrast, beta-cell glucose sensitivity dropped in a monophasic, curvilinear fashion throughout the range of 2-h plasma glucose. Within the NGT range (2-h glucose of 4.1-7.7 mmol/liter), beta-cell glucose sensitivity declined by 50-70% (P < 0.02). Insulin sensitivity decreased sharply in the transition from lean to obese NGT and then declined further in IGT and mild T2DM to level off in the higher three quartiles of diabetic hyperglycemia. In T2DM, defective beta-cell potentiation and rate sensitivity also emerged (P = 0.05). In the whole data set, insulin sensitivity and the dynamic parameters of beta-cell function explained 89% of the variability of 2-h plasma glucose levels. The following conclusions were reached: 1) beta-cell glucose sensitivity falls already within the NGT range in association with rising 2-h plasma glucose concentrations, although absolute insulin secretion rates increase; and 2) throughout the glucose tolerance range, dynamic parameters of beta-cell function (glucose sensitivity, rate sensitivity, and potentiation) and insulin sensitivity are independent determinants of 2-h plasma glucose levels.
We examined the effect of pioglitazone on abdominal fat distribution to elucidate the mechanisms via which pioglitazone improves insulin resistance in patients with type 2 diabetes mellitus. Thirteen type 2 diabetic patients (nine men and four women; age, 52 +/- 3 yr; body mass index, 29.0 +/- 1.1 kg/m(2)), who were being treated with a stable dose of sulfonylurea (n = 7) or with diet alone (n = 6), received pioglitazone (45 mg/d) for 16 wk. Before and after pioglitazone treatment, subjects underwent a 75-g oral glucose tolerance test (OGTT) and two-step euglycemic insulin clamp (insulin infusion rates, 40 and 160 mU/m(2).min) with [(3)H]glucose. Abdominal fat distribution was evaluated using magnetic resonance imaging at L4-5. After 16 wk of pioglitazone treatment, fasting plasma glucose (179 +/- 10 to 140 +/- 10 mg/dl; P < 0.01), mean plasma glucose during OGTT (295 +/- 13 to 233 +/- 14 mg/dl; P < 0.01), and hemoglobin A(1c) (8.6 +/- 0.4% to 7.2 +/- 0.5%; P < 0.01) decreased without a change in fasting or post-OGTT insulin levels. Fasting plasma FFA (674 +/- 38 to 569 +/- 31 microEq/liter; P < 0.05) and mean plasma FFA (539 +/- 20 to 396 +/- 29 microEq/liter; P < 0.01) during OGTT decreased after pioglitazone. In the postabsorptive state, hepatic insulin resistance [basal endogenous glucose production (EGP) x basal plasma insulin concentration] decreased from 41 +/- 7 to 25 +/- 3 mg/kg fat-free mass (FFM).min x microU/ml; P < 0.05) and suppression of EGP during the first insulin clamp step (1.1 +/- 0.1 to 0.6 +/- 0.2 mg/kg FFM.min; P < 0.05) improved after pioglitazone treatment. The total body glucose MCR during the first and second insulin clamp steps increased after pioglitazone treatment [first MCR, 3.5 +/- 0.5 to 4.4 +/- 0.4 ml/kg FFM.min (P < 0.05); second MCR, 8.7 +/- 1.0 to 11.3 +/- 1.1 ml/kg FFM(.)min (P < 0.01)]. The improvement in hepatic and peripheral tissue insulin sensitivity occurred despite increases in body weight (82 +/- 4 to 85 +/- 4 kg; P < 0.05) and fat mass (27 +/- 2 to 30 +/- 3 kg; P < 0.05). After pioglitazone treatment, sc fat area at L4-5 (301 +/- 44 to 342 +/- 44 cm(2); P < 0.01) increased, whereas visceral fat area at L4-5 (144 +/- 13 to 131 +/- 16 cm(2); P < 0.05) and the ratio of visceral to sc fat (0.59 +/- 0.08 to 0.44 +/- 0.06; P < 0.01) decreased. In the postabsorptive state hepatic insulin resistance (basal EGP x basal immunoreactive insulin) correlated positively with visceral fat area (r = 0.55; P < 0.01). The glucose MCRs during the first (r = -0.45; P < 0.05) and second (r = -0.44; P < 0.05) insulin clamp steps were negatively correlated with the visceral fat area. These results demonstrate that a shift of fat distribution from visceral to sc adipose depots after pioglitazone treatment is associated with improvements in hepatic and peripheral tissue sensitivity to insulin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.