It is known that the singularity in the non-cutoff cross-section of the Boltzmann equation leads to the gain of regularity and gain of weight in the velocity variable. By defining and analyzing a non-isotropy norm which precisely captures the dissipation in the linearized collision operator, we first give a new and precise coercivity estimate for the non-cutoff Boltzmann equation for general physical cross sections. Then the Cauchy problem for the Boltzmann equation is considered in the framework of small perturbation of an equilibrium state. In this part, for the soft potential case in the sense that there is no positive power gain of weight in the coercivity estimate on the linearized operator, we derive some new functional estimates on the nonlinear collision operator. Together with the coercivity estimates, we prove the global existence of classical solutions for the Boltzmann equation in weighted Sobolev spaces.
Contents2000 Mathematics Subject Classification. 35A05, 35B65, 35D10, 35H20, 76P05, 84C40.
The Boltzmann equation without Grad's angular cutoff assumption is believed to have regularizing effect on the solution because of the non-integrable angular singularity of the cross-section. However, even though so far this has been justified satisfactorily for the spatially homogeneous Boltzmann equation, it is still basically unsolved for the spatially inhomogeneous Boltzmann equation. In this paper, by sharpening the coercivity and upper bound estimates for the collision operator, establishing the hypo-ellipticity of the Boltzmann operator based on a generalized version of the uncertainty principle, and analyzing the commutators between the collision operator and some weighted pseudo-differential operators, we prove the regularizing effect in all (time, space and velocity) variables on solutions when some mild regularity is imposed on these solutions. For completeness, we also show that when the initial data has this mild regularity and Maxwellian type decay in velocity variable, there exists a unique local solution with the same regularity, so that this solution acquires the C ∞ regularity for positive time.2000 Mathematics Subject Classification. 35A05, 35B65, 35D10, 35H20, 76P05, 84C40.
Abstract. We prove the global existence and uniqueness of classical solutions around an equilibrium to the Boltzmann equation without angular cutoff in some Sobolev spaces. In addition, the solutions thus obtained are shown to be non-negative and C ∞ in all variables for any positive time. In this paper, we study the Maxwellian molecule type collision operator with mild singularity. One of the key observations is the introduction of a new important norm related to the singular behavior of the cross section in the collision operator. This norm captures the essential properties of the singularity and yields precisely the dissipation of the linearized collision operator through the celebrated H-theorem.
As a continuation of our series works on the Boltzmann equation without angular cutoff assumption, in this part, the global existence of solution to the Cauchy problem in the whole space is proved in some suitable weighted Sobolev spaces for hard potential when the solution is a small perturbation of a global equilibrium.2000 Mathematics Subject Classification. 35A05, 35B65, 35D10, 35H20, 76P05, 84C40.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.