In the phosphorelay-mediated cytokinin signal transduction of Arabidopsis thaliana, certain members of the type-B authentic response regulator (ARR) family are implicated in the regulatory networks that are primarily propagated by the cytokinin-receptors [authentic histidine kinases (AHKs)]. Clarification of the involvement of each type-B ARR transcription factor in cytokinin-responsive phenomena is still at a very early stage. Here we analyzed the redundant function of two type-B ARR genes, ARR10 and ARR12, by constructing an arr10/arr12 double mutant. The resulting mutant plants showed stronger phenotypes with special reference to the cytokinin action in roots (e.g. inhibition of root elongation, green callus formation from root explants) than those for each single mutant, suggesting that ARR10 and ARR12 redundantly play an important role in the cytokinin signaling in roots. This idea was further supported by results from root-specific microarray analyses with the double mutant plant. We also showed that ARR10 and ARR12 are involved in the AHK-dependent signaling pathway that negatively regulates protoxylem specification in root vascular tissues. When the double mutant is combined with an arr1 allele, the resultant arr1/arr10/arr12 triple mutant showed phenotypes displaying a very poor growth, quite similar to those of the wooden leg (wol) mutant that virtually lacks cytokinin receptor activities in plants. In this triple arr mutant, the specification of root vascular tissues is also affected as severely as in wol. Taken together, we propose that ARR10 and ARR12, together with ARR1, redundantly play pivotal roles in the AHK-dependent phosphorelay signaling in response to cytokinin in roots.
;In Arabidopsis thaliana, Histidine-to-Aspartate (His® Asp) phosphorelay is a paradigm of a signaling system that is considered to be involved in response to plant hormones, including ethylene and cytokinin. In the current framework of His®Asp phosphorelay in this higher plant, the type-B ARR (response regulator) family members appear to act as DNA-binding transcriptional regulators. Although Arabidopsis thaliana has 11 type-B ARR family members, except for ARR1 and ARR2, no biological information is available with regard to others. As the main objective of this study, we characterized another example, ARR11, in terms of not only its in vitro biochemical properties, but also its biological activity in plants. In plants, the ARR11 gene was expressed predominantly in roots. In vitro, ARR11 showed the ability to acquire a phosphoryl group from a histidine-containing phosphotransfer intermediate (AHP), and also it showed the ability to recognize a specific nucleotide sequence, GGATT. These in vitro results supported the view that ARR11 is indeed a DNA-binding transcription factor, the ability of which is most likely modulated by phosphorylation in its receiver domain. In vivo, when a Cterminal DNA-binding domain lacking the N-terminal phospho-accepting (or receiver) domain was aberrantly expressed, the resulting transgenic plants showed characteristic anomalies during development of apical parts. The observed anomalies included "unusual proliferation of tissues in cotyledons" and "outgrowth of adventitious shoots near cotyledons". These results with regard to the functions of ARR11 are mainly discussed in comparison with those of the previously characterized type-B response regulators.
In Arabidopsis thaliana, a Histidine-to-Aspartate (His-->Asp) phosphorelay is involved in the signal transduction for propagation of certain stimuli, such as plant hormones. Through the phosphorelay, the type-B phospho-accepting response regulator (ARR) family members serve as DNA-binding transcriptional regulators, whose activities are most likely regulated by phosphorylation/dephosphorylation. Based on the fact that this higher plant has 11 type-B ARR family genes, we clarified the expression profiles for all of their transcripts in plants. We constructed and characterized a series of transgenic lines, each carrying a given ARR-promoter::GUS transgene. Transcripts of some type-B ARR family genes were detected more or less ubiquitously in many organs tested, while others were expressed predominantly in reproductive organs. These ARR family members were phylogenetically classified into three sub-families, the largest of which includes the well-characterized ARR1, ARR2, and ARR11. Comparative studies were conducted focusing on ARR20 and ARR21, each of which is a representative member of an uncharacterized minor sub-family. A set of transgenic lines was constructed, in each of which a C-terminal DNA-binding domain lacking the N-terminal phospho-accepting receiver of a given ARR was aberrantly overexpressed. These resulting transgenic lines, including ARR14-C-ox, ARR20-C-ox, and ARR21-C-ox, showed characteristic anomalies during development. These results are discussed with special reference to the His-->Asp phosphorelay signal transduction in A. thaliana.
The inhibition of mevalonate kinase (MVK) by downstream metabolites is an important mechanism in the regulation of isoprenoid production in a broad range of organisms. The first feedback-resistant MVK was previously discovered in the methanogenic archaeon Methanosarcinamazei. Here, we report the cloning, expression, purification, kinetic characterization and inhibition analysis of MVKs from two other methanogens, Methanosaetaconcilii and Methanocellapaludicola. Similar to the M. mazei MVK, these enzymes were not inhibited by diphosphomevalonate (DPM), dimethylallyl diphosphate (DMAPP), isopentenyldiphosphate (IPP), geranylpyrophosphate (GPP) or farnesylpyrophosphate (FPP). However, they exhibited significantly higher affinity to mevalonate and higher catalytic efficiency than the previously characterized enzyme.
cLowering the pH in bacterium-based succinate fermentation is considered a feasible approach to reduce total production costs. Newly isolated Enterobacter aerogenes strain AJ110637, a rapid carbon source assimilator under weakly acidic (pH 5.0) conditions, was selected as a platform for succinate production. Our previous work showed that the ⌬adhE/PCK strain, developed from AJ110637 with inactivated ethanol dehydrogenase and introduced Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PCK), generated succinate as a major product of anaerobic mixed-acid fermentation from glucose under weakly acidic conditions (pH <6.2). To further improve the production of succinate by the ⌬adhE/PCK strain, metabolically engineered strains were designed based on the elimination of pathways that produced undesirable products and the introduction of two carboxylation pathways from phosphoenolpyruvate and pyruvate to oxaloacetate. The highest production of succinate was observed with strain ES04/PCK؉PYC, which had inactivated ethanol, lactate, acetate, and 2,3-butanediol pathways and coexpressed PCK and Corynebacterium glutamicum pyruvate carboxylase (PYC). This strain produced succinate from glucose with over 70% yield (gram per gram) without any measurable formation of ethanol, lactate, or 2,3-butanediol under weakly acidic conditions. The impact of lowering the pH from 7.0 to 5.5 on succinate production in this strain was evaluated under pH-controlled batch culture conditions and showed that the lower pH decreased the succinate titer but increased its yield. These findings can be applied to identify additional engineering targets to increase succinate production. There is an increasing interest in bio-based chemicals from renewable carbon sources because of the increasing price of petroleum and the negative impact of petrochemical production on the environment (1, 2). Succinate, a C 4 -dicarboxylic acid, which is an intermediate metabolite in the tricarboxylic acid cycle, is potentially useful as a chemical precursor for many commodity chemicals, such as ␥-butyrolactone, tetrahydrofuran, and 1,4-butanediol. These chemicals can, in turn, be converted into a wide variety of products, such as green solvents, pharmaceuticals, and biodegradable plastics (3, 4). Lowering the pH of microbial cultures has been considered a feasible approach to reducing the total costs of succinate production by limiting the use of alkali and acids in the fermentation and recovery processes (5, 6). Although anaerobic succinate production by Escherichia coli, Corynebacterium glutamicum, Actinobacillus succinogenes, and Anaerobiospirillum succiniciproducens has been studied with pHs ranging from 6.0 to 7.0 (7-9), few studies have focused on the effect of weakly acidic pH (pH Ͻ6.0) on succinate production by bacteria. This is because these bacteria are sensitive to acidic stress and are unable to grow and assimilate carbon sources effectively under weakly acidic conditions (10, 11). One potential solution to this limitation is to develop a new p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.