The synergy between the alkylguanidinium chain of niphimycin (NM), a polyol macrolide antibiotic, and polyene macrolide amphotericin B (AmB) without such an alkyl side chain was examined using N-methyl-NЉ-alkylguanidines as its synthetic analogs. Among the analogs, N-methyl-NЉ-dodecylguanidine (MC12) most strongly inhibited the growth of Saccharomyces cerevisiae cells and those of other fungal strains in synergy with AmB. MC12 itself was not lethal but the analog could be a cause of a rapid cell death progression of yeast cells in the presence of AmB at a nonlethal concentration. Their combined actions resulted in the generation of NM-like fungicidal activity that depended on plasma membrane disability and cellular reactive oxygen species production. We also found an aberrant vacuolar morphogenesis and an associated vacuolar membrane disability in cells treated simultaneously with MC12 and AmB, as in the case of NM-treated cells. These findings support the idea that the alkylguanidinium chain plays a major role in the fungicidal activity of NM in cooperation with the polyol lactone ring as its enhancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.