Both connective tissue mast cells and mast cells grown in vitro are derived from multipotential hematopoietic stem cells, but these two mast cell populations exhibit many differences in morphology, biochemistry, and function. We investigated whether the phenotype of cultured mast cells or their progeny was altered when the cells were transferred into different locations in vivo. Cultured mast cells were immature by ultrastructure, and stained with alcian blue but with neither safranin or berberine sulfate, a fluorescent dye that binds to the heparin of connective tissue mast cell granules. By contrast, mast cells recovered from the peritoneal cavity of congenitally mast cell-deficient (WB X C57BL/6)F1-W/Wv (WBB6F1-W/Wv) mice 10 wk after intraperitoneal injection of cultured WBB6F1-+/+ or C57BL/6-bgJ/bgJ mast cells stained with both safranin and berberine sulfate. Staining with berberine sulfate was prevented by treatment of the cells with heparinase but not chondroitinase ABC, suggesting that the adoptively transferred mast cell population had acquired the ability to synthesize and store heparin. Furthermore, the recovered mast cells were indistinguishable by ultrastructure from the normal mature peritoneal mast cells of WBB6F1-+/+ mice, and contained substantially more histamine than mast cells studied directly from culture. Intravenous injection of cultured mast cells resulted in the development of safranin-and berberine sulfate-positive mast cells in the peritoneal cavity, spleen, skin, and glandular stomach muscularis propria. Mast cells also developed on the glandular stomach mucosa, but these cells stained with alcian blue rather than safranin, and did not stain with berberine sulfate. This result suggests that cultured mast cells can give rise to mast cells of either the connective tissue type or mucosal phenotype, depending on anatomical location. Furthermore, transplantation of cultured mast cells into WBB6F1-W/Wv mice had no measurable effect on the anemia of the recipient mice, suggesting a possible strategy for repairing the mast cell deficiency of WBB6F1-W/Wv mice without affecting other bone marrow-derived populations such as erythrocytes. Intravenous injection of representative connective tissue type mast cells (30-50% pure peritoneal mast cells derived from WBB6F1-+/+ mice) gave results similar to those obtained with cultured mast cells: mast cells developing in the peritoneal cavity, skin, spleen, and glandular stomach muscularis propria of WBB6F1-W/Wv recipients stained with safranin and berberine sulfate, whereas mast cells developing in the mucosa of the glandular stomach stained only with alcian blue.(ABSTRACT TRUNCATED AT 400 WORDS)
The c-kit receptor tyrosine kinase (KIT) is activated upon ligand binding, thereby leading to a variety of signaling events that play a fundamental role in hematopoiesis. In addition to ligand-dependent activation, we have previously shown that KIT is constitutively activated in a ligand-independent manner by two point mutations, Val- 559-->Gly (G559) mutation in the juxtamembrane domain and Asp-814-->Val (V814) mutation in the phosphotransferase domain. To investigate the biochemical consequence and biologic significance of these mutations, retroviral vectors encoding KITG559 or KITV814 were introduced into murine pro-B-type Ba/F3 cells and myeloid FDC-P1 cells, both of which require interleukin-3 (IL-3) for their growth and survival. In the cells, KITG559 or KITV814 were found to be constitutively phophorylated on tyrosine in the absence of stem cell factor (SCF) that is a ligand for KIT. Chemical cross-linking analysis showed that a substantial fraction of the phosphorylated KITG559 underwent dimerization even in the absence of SCF, whereas the phosphorylated KITV814 did not, suggesting the distinct mechanisms underlying constitutive activation of KIT by G559 and V814 mutations. Furthermore, the cells expressing either KITG559 or KITV814 were found to show a factor-independent growth, whereas the cells expressing wild-type KIT (KITWT) proliferated in response to SCF as well as IL-3. Moreover, subcutaneous injection of Ba/F3 cells expressing KITG559 or KITV814 into nude mice resulted in production of large tumors at all sites of the injection within 2 weeks, and all nude mice quickly succumbed to leukemia and died. These results suggest that, although the mechanisms underlying constitutive activation of KITG559 or KITV814 may be different, both of the activating mutations have a function to induce a factor-independent and tumorigenic phenotype. Also, the data of this study raise the possibility that the constitutively activating mutations of c-kit may play a causal role in development of hematologic malignancies.
The correlation between renal histology and class specific (IgG and IgM) antibodies to double stranded DNA (dsDNA) and single stranded DNA (ssDNA) was studied by enzyme linked immunosorbent assay (ELISA) in 40 untreated patients with systemic lupus erythematosus (SLE). The levels of IgG antibodies to dsDNA were significantly higher in patients with World Health Organisation class IV nephritis than in those with class I, class II, or class III nephritis. IgG antibodies to ssDNA were higher in patients with class IV than in those with class II nephritis. IgG antibodies to dsDNA showed a close correlation with the histological activity score and the amount of electron dense deposit. IgG antibodies to ssDNA showed only a weak correlation with the renal histological activity score. IgM antibodies to dsDNA and IgM antibodies to ssDNA were not correlated with renal histological features. Patients with moderate to severe nephritis had a lower ratio of IgM antibodies to dsDNA to IgG antibodies to dsDNA than those with mild nephritis. These results indicate that the measurement of IgG antibodies to dsDNA is predictive in evaluating renal histological activity in patients with SLE.
The c-kit protooncogene encodes a receptor tyrosine kinase that mediates signals required for differentiation, proliferation and survival of mast cells. We have already shown the constitutive activation of c-kit receptor tyrosine kinase (KIT) in a human mast cell leukemia line (HMC-1) and a murine mastocytoma cell line (P-815). We here examined whether such constitutive activation of KIT occurred in the rat tumor mast cell line RBL-2H3 as well, which is frequently used as a tool for studying functions of mast cells. In RBL-2H3 cells, KIT was constitutively phosphorylated on tyrosine and activated in the absence of autocrine production of its ligand, stem cell factor (SCF). Sequencing analysis revealed that one of c-kit genes of RBL-2H3 cells had a point mutation, resulting in amino acid substitution of Tyr for Asp in codon 817. When rat wild-type c-kit cDNA and mutant-type c-kit cDNA encoding KITTyr817 were transfected into cells of a human embryonic kidney cell line (293T), only mutant form KITTyr817 was constitutively phosphorylated on tyrosine and activated in the absence of SCF. Since mutations at the same Asp codon constitutively activated KIT in all the human HMC-1, murine P-815, and rat RBL-2H3 cell lines, and since the incorporation of anti-sense oligonucleotides of c-kit messenger RNA significantly suppressed the proliferation of RBL-2H3 cells, the activating mutations in the Asp codon of the c-kit gene appeared to be involved in neoplastic growth of mast cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.