The interaction of short and strong laser pulses with an atomic Bose-Einstein condensate is found to generate patterns of recoiling atoms that are different from those seen in previous light-scattering experiments. This phenomenon can only be explained by optical stimulation, showing that the previous description of superradiance as atomic stimulation is incomplete and that matter-wave amplification in Bose-Einstein condensates is suppressed at short times. Our experiments clarify the nature of bosonic stimulation in the four-wave mixing of light and atoms.
We have constructed a novel optical trap for neutral atoms by using a Laguerre-Gaussian (doughnut) beam whose frequency is blue detuned to the atomic transition. Laser-cooled rubidium atoms are trapped in the dark core of the doughnut beam with the help of two additional laser beams which limit the atomic motion along the optical axis. About 10 8 atoms are initially loaded into the trap, and the lifetime is 150 ms. Because the atoms are confined at a point in a weak radiation field in the absence of any external field, ideal circumstances are provided for precision measurements. The trap opens the way to a simple technique for atom manipulation, including Bose-Einstein condensation of gaseous atoms.[S0031-9007 (97)03456-X] PACS numbers: 32.80.Pj, 39.90. + d
Phase-coherent matter-wave amplification was demonstrated using Bose- Einstein-condensed rubidium-87 atoms. A small seed matter wave was created with coherent optical Bragg diffraction. Amplification of this seed matter wave was achieved by using the initial condensate as a gain medium through the superradiance effect. The coherence properties of the amplified matter wave, studied with a matter-wave interferometer, were shown to be locked to those of the initial seed wave. The active matter-wave device demonstrated here has great potential in the fields of atom optics, atom lithography, and precision measurements.
Abstract:We construct a Mach-Zehnder interferometer using Bose-Einstein condensed rubidium atoms and optical Bragg diffraction. In contrast to interferometers based on normal diffraction, where only a small percentage of the atoms contribute to the signal, our Bragg diffraction interferometer uses all the condensate atoms. The condensate coherence properties and high phase-space density result in an interference pattern of nearly 100% contrast. In principle, the enclosed area of the interferometer may be arbitrarily large, making it an ideal tool that could be used in the detection of vortices, or possibly even gravitational waves. PACS number(s): 03.75. Fi, 03.75.Dg, 39.20
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.