We investigated the effectiveness of using argon gas with added nitrogen when filling deep sub-mm through-holes with copper by high-vacuum planar magnetron sputtering, and we examined the optimum amount of added nitrogen. This is done by varying the amount of added nitrogen between 0.5, 1.0, 3.0, 10, and 20 at. % in copper filling experiments conducted at a substrate temperature of 280 C and a gas pressure of p ¼ 9:0 Â 10 À2 Pa with 80-nm-diameter holes having an aspect ratio of 5.6. The results show that the optimal amount of added nitrogen for copper filling is 1.0 at. %, and that the proportion of conformal filling is 1/5. The reasons for this are discussed in terms of the energy relationship between copper atoms adsorbed physically or chemically by nitrogen, sputtered atoms, and recoil atoms or molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.