Osteocytes play a pivotal role in the regulation of skeletal mass. Osteocyte processes are thought to sense the flow of interstitial fluid that is driven through the osteocyte canaliculi by mechanical stimuli placed upon bone, but how this flow elicits a cellular response is virtually unknown. Modern theoretical models assume that osteocyte canaliculi contain ultrastructural features that amplify the fluid flow-derived mechanical signal. Unfortunately the calcified bone matrix has considerably hampered studies on the osteocyte process within its canaliculus. Using one of the few ultra high voltage electron microscopes (UHVEM) available worldwide, we applied UHVEM tomography at 2 MeV to reconstruct unique three-dimensional images of osteocyte canaliculi in 1 μm sections of human bone. A realistic three-dimensional image-based model of a single canaliculus was constructed, and the fluid dynamics of a Newtonian fluid flow within the canaliculus was analyzed. We created virtual 2.2 nm thick sections through a canaliculus and found that traditional TEM techniques create a false impression that osteocyte processes are directly attached to the canalicular wall. The canalicular wall had a highly irregular surface and contained protruding axisymmetric structures similar in size and shape to collagen fibrils. We also found that the microscopic surface roughness of the canalicular wall strongly influenced the fluid flow profiles, whereby highly inhomogeneous flow patterns emerged. These inhomogeneous flow patterns may induce deformation of cytoskeletal elements in the osteocyte process, thereby amplifying mechanical signals. Based on these observations, new and realistic models can be developed that will significantly enhance our understanding of the process of mechanotransduction in bone.
It is well-established that cyclic, but not static, mechanical loading has anabolic effects on bone. However, the function describing the relationship between the loading frequency and the amount of bone adaptation remains unclear. Using a combined experimental and computational approach, this study aimed to investigate whether trabecular bone mechano-regulation is controlled by mechanical signals in the local in vivo environment and dependent on loading frequency. Specifically, by combining in vivo micro-computed tomography (micro-CT) imaging with micro-finite element (micro-FE) analysis, we monitored the changes in microstructural as well as the mechanical in vivo environment [strain energy density (SED) and SED gradient] of mouse caudal vertebrae over 4 weeks of either cyclic loading at varying frequencies of 2, 5, or 10 Hz, respectively, or static loading. Higher values of SED and SED gradient on the local tissue level led to an increased probability of trabecular bone formation and a decreased probability of trabecular bone resorption. In all loading groups, the SED gradient was superior in the determination of local bone formation and resorption events as compared to SED. Cyclic loading induced positive net (re)modeling rates when compared to sham and static loading, mainly due to an increase in mineralizing surface and a decrease in eroded surface. Consequently, bone volume fraction increased over time in 2, 5, and 10 Hz (+15%, +21% and +24%, p ≤ 0.0001), while static loading led to a decrease in bone volume fraction (−9%, p ≤ 0.001). Furthermore, regression analysis revealed a logarithmic relationship between loading frequency and the net change in bone volume fraction over the 4 week observation period ( R 2 = 0.74). In conclusion, these results suggest that trabecular bone adaptation is regulated by mechanical signals in the local in vivo environment and furthermore, that mechano-regulation is logarithmically dependent on loading frequency with frequencies below a certain threshold having catabolic effects, and those above anabolic effects. This study thereby provides valuable insights toward a better understanding of the mechanical signals influencing trabecular bone formation and resorption in the local in vivo environment.
In bone functional adaptation by remodelling, osteocytes in the lacuno-canalicular system are believed to play important roles in the mechanosensory system. Under dynamic loading, bone matrix deformation generates an interstitial fluid flow in the lacuno-canalicular system; this flow induces shear stress on the osteocytic process membrane that is known to stimulate the osteocytes. In this sense, the osteocytes behave as mechanosensors and deliver mechanical information to neighbouring cells through the intercellular communication network. In this study, bone remodelling is assumed to be regulated by the mechanical signals collected by the osteocytes. From the viewpoint of multi-scale biomechanics, we propose a mathematical model of trabecular bone remodelling that takes into account the osteocytic mechanosensory network system. Based on this model, a computational simulation of trabecular bone remodelling was conducted for a single trabecula under cyclic uniaxial loading, demonstrating functional adaptation to the applied mechanical loading as a load-bearing construct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.