Two transcription factors, Pax5 and Blimp-1, form a gene regulatory network (GRN) with a double-negative loop, which defines either B-cell (Pax5 high) or plasma cell (Blimp-1 high) status as a binary switch. However, it is unclear how this B-cell GRN registers class switch DNA recombination (CSR), an event that takes place before the terminal differentiation to plasma cells. In the absence of Bach2 encoding a transcription factor required for CSR, mouse splenic B cells more frequently and rapidly expressed Blimp-1 and differentiated to IgM plasma cells as compared with wild-type cells. Genetic loss of Blimp-1 in Bach2 À/À B cells was sufficient to restore CSR. These data with mathematical modelling of the GRN indicate that Bach2 achieves a time delay in Blimp-1 induction, which inhibits plasma cell differentiation and promotes CSR (Delay-Driven Diversity model for CSR). Reduction in mature B-cell numbers in Bach2 À/À mice was not rescued by Blimp-1 ablation, indicating that Bach2 regulates B-cell differentiation and function through Blimp-1-dependent and -independent GRNs.
We used molecular dynamics ͑MD͒ to obtain an atomistic description of the melting, glass formation, and crystallization processes in metal alloys. These studies use the quantum Sutton-Chen many-body potentials for Cu, Ni, and Ag to examine the Cu 4 Ag 6 and CuNi alloys. Using cooling rates in the range of 2ϫ10 12 to 4 ϫ10 14 K/s, we find that CuNi and pure Cu always form a face-centered-cubic ͑fcc͒ crystal while Cu 4 Ag 6 always forms a glass ͑with T g decreasing as the quench rate increases͒. The crystal formers have radius ratios of 1.025 ͑CuNi͒ and 1.00 ͑Cu͒ while the glass former ͑CuAg͒ has a ratio of 1.13, confirming the role of size mismatch in biasing toward glass formation. ͓S0163-1829͑99͒05205-4͔
The eradication of tumor cells requires communication to and signaling by cells of the immune system. Natural killer (NK) cells are essential tumor-killing effector cells of the innate immune system; however, little is known about whether or how other immune cells recognize tumor cells to assist NK cells. Here, we show that the innate immune receptor Dectin-1 expressed on dendritic cells and macrophages is critical to NK-mediated killing of tumor cells that express N-glycan structures at high levels. Receptor recognition of these tumor cells causes the activation of the IRF5 transcription factor and downstream gene induction for the full-blown tumoricidal activity of NK cells. Consistent with this, we show exacerbated in vivo tumor growth in mice genetically deficient in either Dectin-1 or IRF5. The critical contribution of Dectin-1 in the recognition of and signaling by tumor cells may offer new insight into the anti-tumor immune system with therapeutic implications.DOI: http://dx.doi.org/10.7554/eLife.04177.001
Various lanthanide cations were intercalated into the interlayer of the exfoliated H(x)Ti((2-x)/4)) square(x/4)O(4) x H(2)O (HTO) by the electrostatic self-assembly deposition (ESD) and layer-by-layer self-assembly (LBL) methods. X-ray diffraction and thermal analysis data indicated that interlayer lanthanide cations existed as an aqua ion and were coordinated with 7-10 water molecules under ambient conditions. The interlayer distances were found to be in the range 6-7 Angstrom for HTO layered oxide intercalated with a lanthanide cation. Intercalation of lanthanide cations into the interlayer by the LBL method was monitored by UV-vis spectrum and X-ray diffraction. Photoluminescence properties were also discussed in detail. Eu(3+) intercalated layered oxide exhibited intense red emission at room temperature. The presence of interlayer water molecules was found to be inevitable for the emission with high intensity. The emission intensity was significantly higher for the films conditioned at 100% RH than those at 5% RH. The icelike behavior of the confined water molecules in the interlayer around lanthanide cations was believed to be contributing highly to the emission mechanism. The mechanism was illustrated and explained by data obtained under several conditions.
Cellular components released into the external milieu as a result of cell death and sensed by the body are generally termed damage-associated molecular patterns (DAMPs). Although DAMPs are conventionally thought to be protective to the host by evoking inflammatory responses important for immunity and wound repair, there is the prevailing notion that dysregulated release of DAMPs can also underlie or exacerbate disease development. However, the critical issue for how resultant DAMP-mediated responses are regulated has heretofore not been fully addressed. In the present study, we identify prostaglandin E2 (PGE2) as a DAMP that negatively regulates immune responses. We show that the production of PGE2 is augmented under cell death-inducing conditions via the transcriptional induction of the cyclooxygenase 2 (COX2) gene and that cell-released PGE2 suppresses the expression of genes associated with inflammation, thereby limiting the cell’s immunostimulatory activities. Consistent with this, inhibition of the PGE2 synthesis pathway potentiates the inflammation induced by dying cells. We also provide in vivo evidence for a protective role of PGE2 released upon acetaminophen-induced liver injury as well as a pathogenic role for PGE2 during tumor cell growth. Our study places this classically known lipid mediator in an unprecedented context—that is, an inhibitory DAMP vis-à-vis activating DAMPs, which may have translational implications for designing more effective therapeutic regimens for inflammation-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.