In this paper, a novel accurate deformation distribution measurement technique by using sampling moiré method is proposed. The basic principle and an experimental result of a steel beam in symmetric three-point bending are reported. In this method, the measurement area of a target is attached with an adhesive tape of a known pitch grating firstly. An ordinary CCD camera is installed on a fixed point to record the image during deformation. The captured image is analyzed by performing easy image processing, i.e., thinning-out and linear interpolation, to obtain the multiple phase-shifted moiré patterns. Then, the phase distribution of the moiré pattern can be calculated using phase-shifting method. Finally, the deformation distribution is calculated by the grating pitch times the phase difference of before deformation and after deformation. The experimental results in symmetric three-point bending test show that the displacement of the steel beam at loading point agree well with those obtained by an accurate displacement sensor. The average error of displacement measurement is less than 4 μm when 2 mm grating pitch is used, and it corresponds to 1/500 of the grating pitch accuracy. This indicates that noncontact deformation distribution measurement is possible by simple and easy procedure with high accuracy, high speed, and low cost for the structural evaluation of infrastructures.
A method for determining mixed‐mode stress intensity factors from displacement fields obtained by digital image correlation is studied. To perform automatic evaluation, not only stress intensity factors but crack‐tip location, higher‐order terms in the series expansion of displacement fields and rigid‐body displacement components are also determined simultaneously using nonlinear least squares based on the Newton–Raphson method. Experimental results show that the mixed‐mode stress intensity factors are evaluated accurately from either radial or circumferential displacement components. As mixed‐mode stress intensity factors can be evaluated easily, simply and automatically by the technique with digital image correlation and nonlinear least squares, it is expected that the proposed method can be applied to solve various fracture problems.
Transparent conductive films (TCFs) are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ), is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs.
ABSTRACT--The out-of-plane displacement of a cantilever is measured by phase-shifting digital holography. From four phase-shifted holograms of a cantilever recorded by a CCD image sensor, a complex amplitude at each pixel of the CCD plane is obtained using the conventional phase-shifting method. The complex amplitude of a cantilever is reconstructed from the complex amplitude of the CCD plane using the Fresnel diffraction integral. The phase difference distribution on the cantilever before and after deformation, i.e., the out-of-plane displacement distribution, is calculated. In order to decrease the effect of speckle noise, a new method using divided holograms is proposed. The theory and experimental results are shown.KEY WORDS-~Phase-shiffing digital holography, holographic interferometry, displacement measurement, out-of-plane displacement, speckle noise reduction
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.